Math, asked by inavu, 3 months ago

plz answer this question guys...​

Attachments:

Answers

Answered by Seafairy
32

Given :

\displaystyle{\sf  \int \dfrac{x^2+1}{x^4+1} \:dx}

Solution :

\displaystyle{\sf \implies  \int \dfrac{x^2+1}{x^4+1} \:dx}\\

\displaystyle{\sf \implies  \int \dfrac{\Big(1+\dfrac{1}{x^2}\Big)}{\Big(x^2+\dfrac{1}{x^2}\Big)} \:dx}\\

\displaystyle{\sf \implies \int \dfrac{1+\dfrac{1}{x^2}}{2-2+x^2+\dfrac{1}{x^2}}}\\

Using Substitution,

\boxed{\sf x-\dfrac{1}{x}=t \Rightarrow 1+\dfrac{1}{x^2}\:dx=dt}

\displaystyle{\sf \implies \int \dfrac{1}{t^2+2}\:dt}\\

\displaystyle{\sf \implies \dfrac{1}{\sqrt{2}}\:tan^{-1}\Big(\dfrac{t}{\sqrt{2}}\Big)+C}\\

\displaystyle{\implies \sf \dfrac{1}{\sqrt{2}} \:tan^{-1}\bigg(\dfrac{x^2-1}{\sqrt{2}x}\bigg)+C}

Required Answer :

\boxed{\boxed{\displaystyle{\sf \int \dfrac{x^2+1}{x^4+1}\:dx = \dfrac{1}{\sqrt{2}}\:tan^{-1}\bigg(\dfrac{x^2-1}{\sqrt{2}x}\bigg) +C}}}

Similar questions