Math, asked by inavu, 2 months ago

plz answer this question guys​

Attachments:

Answers

Answered by Seafairy
22

Given :

\displaystyle{\sf \int \dfrac{dx}{4 sin^2x+5cos^2x}}

Solution :

\Rightarrow\displaystyle{\sf \int \dfrac{dx}{4 sin^2x+5cos^2x}}\\

\Rightarrow \displaystyle {\sf \int \dfrac{sec^2x}{4tan^2x+5}dx}\\

\boxed{\sf x = t \Rightarrow sec^2xdx=dt}

\displaystyle{\implies\sf \int \dfrac{dt}{4t^2+5}}\\

\displaystyle{\implies \sf \dfrac{1}{4} \int \dfrac{dt}{t^2+\Big(\dfrac{5}{4}\Big)}}\\

{\displaystyle{\implies \sf \dfrac{1}{4} \times \dfrac{1}{\dfrac{\sqrt{5}}{2}}\:tan^{-1}\Bigg(\dfrac{t}{\dfrac{\sqrt{5}}{2}}\Bigg)+C}}\\

{\displaystyle{\implies  \sf \dfrac{1}{2\sqrt{5}}\:tan^{-1}\Big(\dfrac{2t}{\sqrt{5}}\Big)+C}}\\

{\displaystyle{\implies \sf \dfrac{1}{2\sqrt{5}}\:tan^{-1}\Big(\dfrac{2 tanx}{\sqrt{5}}\Big)+C}}

Required Answer :

\boxed{\boxed{\displaystyle{\sf \int \dfrac{dx}{4 sin^2x+5cos^2x}}={\displaystyle{ \sf \dfrac{1}{2\sqrt{5}}\:tan^{-1}\Big(\dfrac{2 tanx}{\sqrt{5}}\Big)+C}}}}

Answered by andrea76
11

Answer:

seafairy read my about pls dm me

Similar questions