Math, asked by PawaniVashishth, 4 months ago

plz answer this question i will surely make u brainliest

Attachments:

Answers

Answered by Dd19
1

Step-by-step explanation:

x +  {y}^{2}  = 12

x = 12 -  {y}^{2}

put \: value \: of \: x \: in \: equation \:  \:  {x}^{2}  + y = 12

 {(12 -  {y}^{2} )}^{2}  + y = 12

144 - 24 {y}^{2}  +  { {y}^{4} } \: + y - 12 = 0

 {y}^{4}  - 24 {y}^{2}  + y + 132 = 0

 {y}^{4}  - 16 {y}^{2}  - 8 {y}^{2}  + y + 132 = 0

 {y}^{2} ( {y}^{2}  - 16) - (8 {y}^{2}  - y - 132) = 0

 {y}^{2} (y - 4)(y + 4) - (8 {y}^{2}   +  32y - 33y - 132) = 0

{y}^{2} (y - 4)(y + 4) - (8y(y + 4) - 33(y + 4) ) = 0

{y}^{2} (y - 4)(y + 4) - (8y -  33)(y + 4) = 0

(y + 4)[{y}^{2} (y - 4) - (8y - 33)] = 0

 {y}^{2} (y - 4) - (8y - 33) = 0

 {y}^{3}  - 4 {y}^{2}  - 8y + 33 = 0

 {y}^{3}  - 4 {y}^{2}  + 3y - 11y + 33 = 0

y( {y}^{2}  - 4y + 3) - 11(y - 3) = 0

y(y - 3)(y - 1) - 11(y - 3) = 0

(y - 3)[y(y - 1) - 11] = 0

y(y - 1) - 11 = 0

 {y}^{2}  - y - 11 = 0

Comparing with the general form of quadratic equation a {x}^{2}   + bx + c = 0

a = 1, b = -1 c = -11

by formula method

y =  \frac{ - b +  -  \sqrt{ {b - 4ac}^{2} } }{2a}

y =  \frac{1 +  -  \sqrt{1 - 4 \times 1 \times  - 11} }{2}

y =  \frac{1 +  -  \sqrt{1 + 44} }{2}

y =  \frac{1 +  -  \sqrt{45} }{2}

y =  \frac{1 +  - 3 \sqrt{5} }{2}

for \: y =  \frac{1 + 3 \sqrt{5} }{2}  ,\:  {y}^{2}  =  {( \frac{1 + 3 \sqrt{5} }{2}) }^{2}

 {y}^{2}  =  \frac{1 + 6 \sqrt{5}  + 45}{4}  =  \frac{46 + 6 \sqrt{5} }{4}  =  \frac{23 + 3 \sqrt{5} }{2}

x = 12 -  {y}^{2}  = 12 -  \frac{23 + 3 \sqrt{5} }{2}  =  \frac{24 - (23 + 3 \sqrt{5}) }{2}

x =  \frac{24 - 23 - 3 \sqrt{5} }{2}  =  \frac{1 - 3 \sqrt{5} }{2}

Therefore, for \: y =  \frac{1 + 3 \sqrt{5} }{2}  \: x =  \frac{1 - 3 \sqrt{5} }{2}

Similarly, for \: y =  \frac{1  -  3 \sqrt{5} }{2}  \: x =  \frac{1  +  3 \sqrt{5} }{2}

Hence,

(x ,\: y) = ( \frac{1 +  - 3 \sqrt{5} }{2}  , \: \frac{1  -  + 3 \sqrt{5} }{2} )

Similar questions