Math, asked by atharvapadelkar, 6 months ago

plz answer this question plzzzzz
The question is
compare the following pairs of ratio​

Attachments:

Answers

Answered by KrisGalaxy
8

 \fbox \red { √15/√8 is greater }

First of all

all we need to do is to rationalise each of the terms.

Let's rationalise the 1st one

 \frac{ \sqrt{15} }{ \sqrt{8} }  \\  \frac{ \sqrt{15} }{ \sqrt{8} }  \times  \frac{ \sqrt{8} }{ \sqrt{8} }  \\  \\   \frac{ \sqrt{120} }{ \sqrt{64} }  \\  \\  \frac{ \sqrt{120} }{8} .......(eq \: 1)

Now rationalise the 2nd term.

 \frac{ \sqrt{8} }{ \sqrt{15} }  \\  \\  \frac{ \sqrt{8} }{ \sqrt{15} }  \times  \frac{ \sqrt{15} }{ \sqrt{15} }  \\  \\  \frac{ \sqrt{120} }{ \sqrt{225} }  \\  \\  \frac{ \sqrt{120} }{15} ....... \: (eq \: 2)

Comparing equation 1 & 2 by cross - multiplication

 \frac{ \sqrt{120} }{8}  : \:  \frac{ \sqrt{120} }{15}  \\  \\  \sqrt{120}  \times 15 \: : \:  \sqrt{120}  \times 8 \\  \\ 15 \sqrt{120}  \: : \: 8 \sqrt{120}

Hence 15√120 is greater than 8√120

Therefore the first term is greater

that is √15/√8 > √8/√15

Similar questions