Math, asked by rajeevkumar83601, 10 months ago

plz answer this question than I follow u​

Attachments:

Answers

Answered by Anonymous
5

Solution :

Case 1

  • Sum of zeroes = 0
  • Product of zeroes = √5

 \implies\tt  {x}^{2}  - (sum)x + product \\  \\   \implies\tt {x}^{2}  - (0)x +  \sqrt{5}  \\  \\  \implies \tt  {x}^{2}  +  \sqrt{5}

Case 2

  • Sum of zeroes = - 7/4
  • Product of zeroes = 1/4

\implies \tt  {x}^{2}  - (sum)x + product \\  \\  \tt \implies {x}^{2}  -  \bigg( -  \frac{7}{4}  \bigg)x +  \frac{1}{4}  \\  \\ \tt \implies {x}^{2}   +  \frac{7x}{4}  +  \frac{1}{4}

Case 3

  • Sum of zeroes = 4
  • Product of zeroes = 1

 \implies\tt  {x}^{2} - (sum)x + product \\  \\  \tt \implies {x}^{2}  - (4)x + 1 \\  \\  \tt \implies {x}^{2}  - 4x + 1

Answered by Anonymous
6

Question:

Use the formula :-

p(x) = x^2 - (sum of zero) x + product of zeroes.

Find quadratic polynomial each with given numbers as dum & Product of its zeroes:-

  1. 0, √5
  2. -7/4, 1/4
  3. 4, 1

Solution :

Case 1

  • Sum of zeroes = 0
  • Product of zeroes = √5

 \implies {x}^{2}  - (sum)x + product

 \implies {x}^{2}  - (0)x +  \sqrt{5}

 \implies {x}^{2}   +  \sqrt{5}

Case 2

  • Sum of zeroes = - 7/4
  • Product of zeroes = 1/4

 \implies {x}^{2} - (sum)x + product

 \implies {x}^{2} - \frac({-7}{4}x + \frac{1}{4}

 \implies {x}^{2} + \frac{7x}{4}x +  \frac{1}{4}

Case 3

  • Sum of zeroes = 4
  • Product of zeroes = 1

 \implies {x}^{2} - (sum)x + product

 \implies {x}^{2} - (4)x + 1

 \implies {x}^{2} - 4x + 1

Similar questions