Math, asked by potterhead32, 2 months ago

Plz answer this question with correct explanation​

Attachments:

Answers

Answered by pavithra4431
1

Answer:

simplify and express the result in its simplest form 3√2×√5

Answered by Anonymous
2

Answer:

\frac{22}{2+\sqrt{3}+\sqrt{5}}=4-2\sqrt{15}+\sqrt{5}+3\sqrt{3}

Step-by-step explanation:

 \bold{Given: \frac{22}{2+\sqrt{3}+\sqrt{5}} }

We have to rationalize the denominator.

\frac{22}{(2+\sqrt{2})+\sqrt{5}}

\implies\frac{22}{(2+\sqrt{3})+\sqrt{5}}\times\frac{(2+\sqrt{3})-\sqrt{5}}{(2+\sqrt{3})-\sqrt{5}}

\implies\frac{22(2+\sqrt{3}-\sqrt{5})}{((2+\sqrt{3})-\sqrt{5})((2+\sqrt{3})-\sqrt{5})}

\implies\frac{22(2+\sqrt{3}-\sqrt{5})}{((2+\sqrt{3})-\sqrt{5})((2+\sqrt{3})-\sqrt{5})}

\implies\frac{22(2+\sqrt{3}-\sqrt{5})}{(2+\sqrt{3})^2-(\sqrt{5})^2}

\implies\frac{44+22\sqrt{3}-22\sqrt{5}}{4+(\sqrt{3})^2+4\sqrt{3}-5}

\implies\frac{44+22\sqrt{3}-22\sqrt{5}}{2+4\sqrt{3}}

\implies\frac{22+11\sqrt{3}-11\sqrt{5}}{1+2\sqrt{3}}

\implies\frac{22+11\sqrt{3}-11\sqrt{5}}{1+2\sqrt{3}}\times\frac{1-2\sqrt{3}}{1-2\sqrt{3}}

\implies\frac{(22+11\sqrt{3}-11\sqrt{5})(1-2\sqrt{3})}{(1+2\sqrt{3})(1-2\sqrt{3})}

\implies\frac{22\sqrt{15}-11\sqrt{5}-33\sqrt{3}-44}{1-(2\sqrt{3})^2}

 \implies\frac{22\sqrt{15}-11\sqrt{5}-33\sqrt{3}-44}{-11}

\implies4-2\sqrt{15}+\sqrt{5}+3\sqrt{3}

 \bold{Therefore, \frac{22}{2+\sqrt{3}+\sqrt{5}}=4-2\sqrt{15}+\sqrt{5}+3\sqrt{3} }

Similar questions