Math, asked by aryan05arorapeumhe, 10 months ago

plz answer this question with step by step explaination​

Attachments:

Answers

Answered by vasusaini1276
1

Answer:

x ^{3}  +  \frac{1}{x ^{3} }  = 18

Step by step explanation:

x^{2}  +   \frac{1}{x ^{2} }  = 7

To find:

x ^{3}   + \frac{1}{x ^{3} }

Solution:

(x +  \frac{1}{x} ) ^{2}  = x ^{2}  +  \frac{1}{x^{2} }  + 2 \times x \times  \frac{1}{x}   \\ put \: value \: ofx ^{2}  +  \frac{1}{x ^{2} } in \: above \: equation \\ (x  +  \frac{1}{x} )^{2}  = 7 + 2 \\ (x +  \frac{1}{x} ) ^{2}  = 9 \\ (x  +  \frac{1}{x} ) ^{2}  = (3) ^{2}  \\ taking \: square \: of \: both \: side \\ x +  \frac{1}{x}  = 3

Now,

cubic \: both \: side \\ (x +  \frac{1}{x} ) ^{3}  = (3) ^{3}  \\ x ^{3}  +  \frac{1}{x ^{3} }  + 3x( \frac{1}{x} )(x +  \frac{1}{x} ) = 27 \\ x ^{3}  +  \frac{1}{x ^{3} } +  3(x +  \frac{1}{x}  ) = 27 \\put \: value \: of \: (x +  \frac{1}{x})in \: above \: equation \\   x ^{3}  +  \frac{1}{x ^{3} } +3 \times 3 = 27 \\ x ^{3}   +  \frac{1}{x ^{3} }   + 9 = 27 \\ x ^{3}  +  \frac{1}{x ^{3} }  = 27 - 9 \\ x ^{3}  +  \frac{1}{x ^{3} }  = 18

Hope this answer help you

Similar questions