Math, asked by shiva752, 10 months ago

plz answer this

trigonometry class 10.........​

Attachments:

Answers

Answered by student5649
2

Answer:

 \frac{(1 + cos) {}^{2} }{sin {}^{2}}

 \frac{(1 +  \cos)(1 +  \cos)  }{(1 -  \cos) {}^{2}  }

 \frac{(1 +  \cos)(1 +  \cos)}{(1 +  \cos)(1  -   \cos)}

 \frac{(1 +  \cos)}{(1  -   \cos)}

Answered by RvChaudharY50
160

{\large\bf{\mid{\overline{\underline{To\:Prove:-}}}\mid}}

   \blue{\sf(\dfrac{1 + cos \theta}{sin\theta}) ^{2} =  \dfrac{1 + cos\theta}{1  -  cos\theta}}

\large\star{\underline{\tt{\red{Answer}}}}\star

 \bf \: solving \:  \red{LHS} \: we \: get : -  -

\sf(\dfrac{1 + cos \theta}{sin\theta}) ^{2} \\  \\ \red\leadsto \: \sf\dfrac{(1 + cos \theta)^{2} }{(sin^{2} \theta) } \\  \\  \bf \: now \: we \: know \: that \\  \\ \:     \green{\large\boxed{\sf \: sin^{2}\theta  =  1 - cos^{2}\theta}} \\  \\      \pink{\large\boxed{\sf \: {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}} \\  \\ \bf putting \: both \: in \: denominator \: we \: get \\  \\ \red\leadsto \: \sf\dfrac{(1 + cos \theta)^{ \cancel2} }{ \cancel{(1 + cos \theta)}(1  -  cos \theta)} \\  \\ \red\leadsto \: \sf \:   \purple{\dfrac{(1+cos \theta)}{(1  -  cos \theta)}} \\  \\ \pink{\large\boxed{\boxed{\bold{= RHS}}}} \\  \\  \\ \LARGE\red{\boxed{\tt\blue{Hence}\purple{,}\green {Proved}}}

_____________________________________

#answerwithquality

#BAL

Similar questions