Plz answer thr ques correctly⇪
Answers
x²-10<=6,x²<=6+10,x²<=√16,x=+4,-4
Answér :
(iv). (-∞,-4] U [-2,2] U [4,∞)
Note :
• If |x| = a , then x = ± a
• If |x| < a , then x € (-a,a) [ OR -a < x < a ]
• If |x| ≤ a , then x € [-a,a] [ OR -a ≤ x ≤ a ]
• If |x| > a , then x € (-∞,-a) U (a,∞)
[ OR x < -a or x > a ]
• If |x| ≥ a , then x € (-∞,-a] U [a,∞)
[ OR x ≤ -a or x ≥ a ]
Solution :
- Given : |x² - 10| ≤ 6 , x € R
- To find : Solution set
We have ;
|x² - 10| ≤ 6
Here ,
Two cases arises ;
1). x² - 10 ≤ -6
OR
2). x² - 10 ≥ 6
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Case1 : x² - 10 ≤ -6
=> x² - 10 ≤ -6
=> x² - 10 + 6 ≤ 0
=> x² - 4 ≤ 0
=> (x - 2)(x + 2) ≤ 0
Here ,
Two sub-cases arises ;
1a). x - 2 ≥ 0 and x + 2 ≤ 0
OR
1b). x - 2 ≤ 0 and x + 2 ≥ 0
Case1a : x - 2 ≥ 0 and x + 2 ≤ 0
=> x - 2 ≥ 0 and x + 2 ≤ 0
=> x ≥ 2 and x ≤ -2
=> x € [2,∞) and x € (-∞,-2]
=> x € [2,∞) ∩ (-∞,-2]
=> x € ∅ [ °•° There exist no real number which is greater than 2 and smaller than -2 simultaneously ]
OR
Case1b : x - 2 ≤ 0 and x + 2 ≥ 0
=> x - 2 ≤ 0 and x + 2 ≥ 0
=> x ≤ 2 and x ≥ -2
=> x € (-∞,2] and x € [-2,∞)
=> x € (-∞,2] ∩ [-2,∞)
=> x € [-2,2] [ or -2 ≤ x ≤ 2 ]
Here ,
The solution set for case1 will be given as the union of solutions found in both the sub-cases .
Thus ,
=> x € ∅ or x € [-2,2]
=> x € ∅ U [-2,2]
=> x € [-2,2]
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
OR
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Case2 : x² - 10 ≥ 6
=> x² - 10 ≥ 6
=> x² - 10 - 6 ≥ 0
=> x² - 16 ≥ 0
=> (x - 4)(x + 4) ≥ 0
Here ,
Two sub-cases arises ;
2a). x - 4 ≥ 0 and x + 4 ≥ 0
OR
2b). x - 4 ≤ 0 and x + 4 ≤ 0
Case2a : x - 4 ≥ 0 and x + 4 ≥ 0
=> x - 4 ≥ 0 and x + 4 ≥ 0
=> x ≥ 4 and x ≥ -4
=> x € [4,∞) and x € [-4,∞)
=> x € [4,∞) ∩ [-4,∞)
=> x € [4,∞)
OR
Case2b : x - 4 ≤ 0 and x + 4 ≤ 0
=> x - 4 ≤ 0 and x + 4 ≤ 0
=> x ≤ 4 and x ≤ -4
=> x € (-∞,4] and x € (-∞,-4]
=> x € (-∞,4] ∩ (-∞,-4]
=> x € (-∞,-4]
Here ,
The solution set for case2 will be given as the union of solutions found in both the sub-cases .
Thus ,
=> x € [4,∞) or x € (-∞,-4]
=> x € [4,∞) U (-∞,-4]
=> x € (-∞,-4] U [4,∞)
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Here ,
The solution set of the given inequation will be given as the union of the solutions found in both the cases .
Thus ,
Solution set will be given as ;
=> x € [-2,2] U (-∞,-4] U [4,∞)
=> x € (-∞,-4] U [-2,2] U [4,∞)