Plz answer thr ques correctly⇪
Attachments:
Answers
Answered by
3
Answer :
(ii). 3
Solution :
- Given : y = √(5 - x) / (x - 3) + 1/√(x - 1)
- To find : No. of integral solutions
Here ,
y = √(5 - x) / (x - 3) + 1/√(x - 1)
The conditions for y to be a real valued function will be ;
• 5 - x ≥ 0 , x € I
• x - 3 ≠ 0 , x € I
• x - 1 > 0 , x € I
Now ,
• 5 - x ≥ 0 , x € I
→ 5 ≥ x , x € I
→ x ≤ 5 , x € I
→ x € { . . . , -1 , 0 , 1 , 2 , 3 , 4 , 5 }
• If x - 3 ≠ 0 , x € I
→ x ≠ 3 , x € I
→ x € I - {3}
→ x € { . . . - 3 , -2 , -1 , 0 , 1 , 2 , 4 , 5 . . . }
• x - 1 > 0 , x € I
→ x > 1 , x € I
→ x € { 2 , 3 , 4 , 5 . . . }
Clearly ,
The integers satisfying all the conditions are ;
2 , 4 , 5 .
Hence ,
The number of Integral solutions of the given inequation is 3 .
Similar questions