Math, asked by lovelyguys6, 7 months ago

plz answers it fast plz​

Attachments:

Answers

Answered by kellycheungaims
1

Answer:

30

Step-by-step explanation:

10+8=18

18+12=30

Answered by mk8926391
1

Answer:

Given length of common chord AB=12 cm

Let the radius of the circle with centre O is OA=10 cm

Radius of circle with centre P is AP=8 cm

From the figure, OP⊥AB

⇒AC=CB

∴AC=6 cm   (Since AB=12 cm)

In ΔACP, 

AP2=PC2+AC2    [By Pythagoras theorem]

⇒82=PC2+62  

⇒PC2=64–36=28

PC=27 cm

Consider ΔACO,

AO2=OC2+AC2                     [By Pythagoras theorem]

⇒102=OC2+62  

⇒OC2=100−36=64

⇒OC=8 cm

From the figure, OP=OC+PC=8+27 cm 

Hence, the distance between the centres is (8+27)  cm.

Step-by-step explanation:

i only need brainliest answers

if any of left

plz mark it

Similar questions