Math, asked by MysticaIStar, 2 months ago

Plz Any class 11 Moderator please help. if you don't know share with other moderator​

Attachments:

Answers

Answered by pulakmath007
20

SOLUTION

TO DETERMINE

1.

TO PROVE

\displaystyle \sf{ \lim_{x \to 0} \frac{ \sin x}{x} = 1}

TO EVALUATE

\displaystyle \sf{   \lim_{x \to 0}\frac{ \sin ax}{bx} }

2. To find the Geometric Progression

EVALUATION

Answer to Question : 1

First Part

Let us consider a circle with center at O and radius OA = 1 unit

Where ∠ AOP = x radian

Now area of the triangle OAP

 \displaystyle \sf{ =  \frac{1}{2}. OA. PB}

 \displaystyle \sf{ =  \frac{1}{2}.1. \sin x \:  \:  \: sq.unit}

 \displaystyle \sf{ =  \frac{1}{2} \sin x \:  \:  \: sq.unit}

Area of the sector OAP

 \displaystyle \sf{ =  \frac{\pi. {1}^{2} }{2\pi}  x \:  \:  \: sq.unit}

 \displaystyle \sf{ =  \frac{x}{2}  \:  \:  \: sq.unit}

Area of the triangle OAQ

 \displaystyle \sf{ =  \frac{1}{2}.1. \tan x \:  \:  \: sq.unit}

 \displaystyle \sf{ =  \frac{1}{2} \frac{ \sin x}{ \cos x}   \:  \:  \: sq.unit}

Now we have

Δ OAP ⊆ Area of Sector OAP ⊆ Δ OAQ

Thus we get

 \displaystyle \sf{   \frac{1}{2} \sin \: x <  \frac{x}{2}  <  \frac{1}{2} \frac{ \sin x}{ \cos x}   \:  \: }

 \displaystyle \sf{  \implies \: 1  <  \frac{x}{ \sin x}  <  \frac{1}{ \cos x}   \:  \: }

 \displaystyle \sf{  \implies \:  \cos x  <  \frac{\sin x}{ x}  < 1 }

This inequality is true for all x > 0

Also

 \sf{\cos( -  x) =  \cos x}

 \displaystyle \sf{ \frac{\sin ( - x)}{ ( - x)}  =  \frac{ - \sin x}{ -  x}  = \frac{\sin x}{ x}  }

So the inequality is also true for x < 0

Now

\displaystyle \sf{ \lim_{x \to 0} \: 1 = 1 \:  \:  \:  \: and \:  \:   \lim_{x \to 0} \:  \cos x= 1}

So by the Pinching Theorem

\displaystyle \sf{  \lim_{x \to 0}\frac{ \sin x}{x} = 1}

Hence proved

Second Part

\displaystyle \sf{   \lim_{x \to 0}\frac{ \sin ax}{bx} }

\displaystyle \sf{ =    \lim_{x \to 0}\frac{ \sin ax}{ax} . \lim_{x \to 0} \frac{ax}{bx} }

\displaystyle \sf{ =    \lim_{x \to 0}\frac{ \sin ax}{ax} .  \frac{a}{b} }

\displaystyle \sf{ =    \frac{a}{b}  \:  \lim_{x \to 0}\frac{ \sin ax}{ax} }

Let y = ax

Then y → 0 as x → 0

Thus we get

\displaystyle \sf{  \lim_{x \to 0}\frac{ \sin ax}{bx} }

\displaystyle \sf{ =    \frac{a}{b}  \:  \lim_{x \to 0}\frac{ \sin ax}{ax} }

\displaystyle \sf{ =    \frac{a}{b}  \:  \lim_{y \to 0}\frac{ \sin y}{y} }

\displaystyle \sf{ =    \frac{a}{b}   \times 1}

\displaystyle \sf{ = \frac{a}{b}   }

Answer to Question : 2

Let first term = a and common ratio = r

Then

 \sf{ \: n \:  \: th \: term = a \times  {r}^{n - 1} }

By the first condition

a + ar = - 4 - - - - (1)

By the second condition

 \sf{a {r}^{4}  = 4 \times a {r}^{2} }

 \sf{ \implies \: {r}^{2}  = 4 }

 \sf{ \implies \: r  =  \pm \: 2 }

When r = 2 , from Equation 1 we get

 \displaystyle \sf{a + 2a =  - 4}

 \displaystyle \sf{ \implies \: a =  -  \frac{ 4}{3} }

In that case the progression is

 \displaystyle \sf{ -  \frac{4}{3} \:,  \:  -  \frac{8}{3}  \: , \:  -  \frac{16}{3}  \: , \: ... }

When r = - 2 , from Equation 1 we get

 \displaystyle \sf{  \: a - 2a =   - 4}

 \displaystyle \sf{ \implies \:  - a =   - 4}

 \displaystyle \sf{ \implies \: a = 4}

In that case the progression is

4 , - 8 , 16 , - 32 , 64 , - 128 ,...

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Attachments:

amansharma264: Excellent
pulakmath007: Thank you Brother
Similar questions