Math, asked by symashah000, 2 months ago

Plz anyone solve this​

Attachments:

Answers

Answered by Priyashmi
2

Answer:

The answer is given in the photo..

Step-by-step explanation:

HOPE IT HELPS YOU....

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a : b \:  =  \: c : d

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{ {c}^{2} }{ {d}^{2} }  = \dfrac{ {a}^{2}  +  {c}^{2} }{ {b}^{2}  +  {d}^{2} }

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a : b \:  =  \: c : d

Let assume that,

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d}  = x

So,

\rm :\implies\:a = bx

and

\rm :\implies\:c = dx

Now

Consider,

\rm :\longmapsto\:\dfrac{ {c}^{2} }{ {d}^{2} }

\rm \:  =  \:  \: \dfrac{ {(dx)}^{2} }{ {d}^{2} }  \:  \:  \:  \:  \:  \{ \because \: c = dx \}

\rm \:  =  \:  \: \dfrac{ {d}^{2} {x}^{2}  }{ {d}^{2} }

\rm \:  =  \:  \:  {x}^{2}

\bf\implies \:\:\dfrac{ {c}^{2} }{ {d}^{2} }  =  {x}^{2}  -  -  - (1)

Now,

Consider,

\rm :\longmapsto\:\dfrac{ {a}^{2}  +  {c}^{2} }{ {b}^{2}  +  {d}^{2} }

\rm \:  =  \:  \: \dfrac{ {(bx)}^{2}  +  {(dx)}^{2} }{ {b}^{2}  +  {d}^{2} }  \:  \:  \:  \:  \: \{ \because \: c = dx  \: and \: a = bx\}

\rm \:  =  \:  \: \dfrac{ {b}^{2}  {x}^{2}  +  {d}^{2}  {x}^{2} }{ {b}^{2}  +  {d}^{2} }

\rm \:  =  \:  \: \dfrac{ {x}^{2} ( {b}^{2}  +  {d}^{2} )}{ {b}^{2}  +  {d}^{2} }

\rm \:  =  \:  \:  {x}^{2}

\bf\implies \:\:\dfrac{ {a}^{2}  +  {c}^{2} }{ {b}^{2}  +  {d}^{2} }  =  {x}^{2}  -  -  - (2)

Thus,

From equation (1) and equation (2), we concluded that

\rm :\longmapsto\:\dfrac{ {c}^{2} }{ {d}^{2} }  = \dfrac{ {a}^{2}  +  {c}^{2} }{ {b}^{2}  +  {d}^{2} }

Hence, Proved

Additional Information :-

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}, \: then \:

\underbrace{\boxed{ \tt{\dfrac{a}{c}  = \dfrac{b}{d} \:is \: called \: alternendo }}}

\underbrace{\boxed{ \tt{\dfrac{b}{a}  = \dfrac{d}{c} \:is \: called \: invertendo }}}

\underbrace{\boxed{ \tt{\dfrac{a + b}{b}  = \dfrac{c + d}{d} \:is \: called \: componendo}}}

\underbrace{\boxed{ \tt{\dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d} \:is \: called \: dividendo}}}

\underbrace{\boxed{ \tt{\dfrac{a+ b}{a - b}  = \dfrac{c + d}{c - d} \:is \: called \:componendo \: and \:  dividendo}}}

Similar questions