plz anyone solve this
Attachments:
Answers
Answered by
1
Step-by-step explanation:
sinQ+2cosQ=1
sinQ=1-2cosQ
2sinQ-cosQ= EQ 2
put sinQ=1-2cos Q in EQ 2 we have
2(1-2cos Q ) -cos Q =
2-4cos Q -cos Q =
2-3 cos Q =
cos Q= 2/3
DON'T FORGET TO MARK ME AS BRAIN LIST
Answered by
0
Answer:
Consider the given equation.
sinθ+2cosθ=1 ……… (1)
On squaring both sides, we get
(sinθ+2cosθ)2=12
sin2θ+4cos2θ+4sinθcosθ=1
We know that
sin2θ=1−cos2θ
cos2θ=1−sin2θ
Therefore,
1−cos2θ+4(1−sin2θ)+4sinθcosθ=1
−cos2θ+4−4sin2θ+4sinθcosθ=0
−cos2θ−4sin2θ+4sinθcosθ=−4
4sin2θ+cos2θ−4sinθcosθ=4
(2sinθ−cosθ)2=4
2sinθ−cosθ=2
Hence, proved.
Similar questions