plz can any one give value points for number systems chapter ncert ch1math
Answers
Step-by-step explanation:
which class?? comment
I am answering according to 9th class
points are
Numbers
Number: Arithmetical value representing a particular quantity. The various types of numbers are Natural Numbers, Whole Numbers, Integers, Rational Numbers, Irrational Numbers, Real Numbers etc.
Natural Numbers
Natural numbers(N) are positive numbers i.e. 1, 2, 3 ..and so on.
Whole Numbers
Whole numbers (W) are 0, 1, 2,..and so on. Whole numbers are all Natural Numbers including ‘0’. Whole numbers do not include any fractions, negative numbers or decimals.
Integers
Integers are just like whole numbers, but they also include negative numbers. They are denoted by Z. Examples: -3, -2, -1, 0, 1, 2
Rational Numbers
A number ‘r’ is called a rational number if it can be written in the form pq, where p and q are integers and q ≠ 0.
Irrational Numbers
Any number that cannot be expressed in the form of pq, where p and q are integers and q≠0, is an irrational number. Examples: √2, 1.010024563…, e, π
Real Numbers
Any number which can be represented on the number line is a Real Number(R). It includes both rational and irrational numbers. Every point on the number line represents a unique real number.
Irrational Numbers
Representation of Irrational numbers on the Number line
Let √x be an irrational number. To represent it on the number line we will follow the following steps:
Take any point A. Draw a line AB = x units.
Extend AB to point C such that BC = 1 unit.
Find out the mid-point of AC and name it ‘O’. With ‘O’ as the centre draw a semi-circle with radius OC.
Draw a straight line from B which is perpendicular to AC, such that it intersects the semi-circle at point D.
Length of BD=√x.
CBSE Notes Class 9 Maths Chapter 1-4
Constructions to Find the root of x.
With BD as the radius and origin as the centre, cut the positive side of the number line to get √x.
Identities for Irrational Numbers
Operations on Rational and Irrational numbers
Arithmetic operations between:
rational and irrational will give an irrational number.
irrational and irrational will give a rational or irrational number.
Example : 2 × √3 = 2√3 i.e. irrational. √3 × √3 = 3 which is rational.
Identities for irrational numbers
If a and b are real numbers then:
√ab = √a√b
√ab = √a√b
(√a+√b) (√a-√b) = a – b
(a+√b)(a−√b) = a²−b
(√a+√b)(√c+√d) = √ac+√ad+√bc+√bd
(√a+√b)(√c−√d) = √ac−√ad+√bc−√bd
(√a+√b)2 = a+2√ab+b
Rationalisation
Rationalisation is converting an irrational number into a rational number. Suppose if we have to rationalise 1/√a.
1/√a × 1/√a = 1/a
Rationalisation of 1/√a+b:
(1/√a+b) × (1/√a−b) = (1/a−b²)
Laws of Exponents for Real Numbers
If a, b, m and n are real numbers then:
am × an= am+n
(am) n = amn
am/an = am−n
ambm=(ab)m
Here, a and b are the bases and m and n are exponents.
Exponential representation for irrational numbers
If a > 0 and n is a positive integer, then: n√a=a1n Let a > 0 be a real number and p and q be rational numbers, then:
ap × aq = ap + q
(ap)q = apq
ap/ aq= ap−q
apbp = (ab)p
Decimal Representation of Rational Numbers
Decimal expansion of Rational and Irrational Numbers
The decimal expansion of a rational number is either terminating or non- terminating and recurring.
Example: 1/2 = 0.5 , 1/3 = 3.33…….
The decimal expansion of an irrational number is non terminating and non-recurring.
Examples: √2 = 1.41421356..
Expressing Decimals as rational numbers
Case 1 – Terminating Decimals
Example – 0.625
Let x=0.625
If the number of digits after the decimal point is y, then multiply and divide the number by 10y.
So, x = 0.625 × 1000/1000 = 625/1000 Then, reduce the obtained fraction to its simplest form.
Hence, x = 5/8
Case 2: Recurring Decimals
If the number is non-terminating and recurring, then we will follow the following steps to convert it into a rational number:
Example –CBSE Class 9 Maths notes Chapter 1 - 1
Step 1. Let x = CBSE Class 9 Maths notes Chapter 1 - 2 (1)
Step 2. Multiply the first equation with 10y, where y is the number of digits that are recurring.
Thus, 100x = CBSE Class 9 Maths notes Chapter 1 - 3(2)Steps 3. Subtract equation 1 from equation 2.On subtracting equation 1 from 2, we get99x = 103.2
x=103.2/99 = 1032/990
Which is the required rational number.
Reduce the obtained rational number to its simplest form Thus,
x=172/165
IF YOU LIKE THE ANSWER PLEASE MARK IT THE BRAINLIEST ANSWER
Answer:
Q.4 Which of the following number has terminating decimal expansion
1 point
3/7
3/11
5/3
3/5
Q.5 If a and b are both positive rational numbers then (√a+√b)(√