Math, asked by Anonymous, 9 months ago

plz deae solve this problem​

Attachments:

Answers

Answered by MIRZAKIR01
6

Given \:  \: Question \:  \:  \: Is \:  \\  \\  \alpha  \:  \:  \: and \:  \:  \:  \beta  \:  \: are \:  \: the \:  \:  \: the \:  \: roots \:  \: of \:  \: the \:  \: equation \\ 2x {}^{2}  - 5x + 2 = 0 \\ find \:  \: ( \alpha  - 1) {}^{( \beta  - 1)}  \\  \\ Answer \: \:  \\  \\ 2x {}^{2}  - 4x - 1x + 2 = 0 \\  \\ 2x(x - 2) - 1(x - 2) = 0 \\  \\ (x - 2)(2x - 1) = 0 \\  \\ (x - 2) = 0 \:  \:  \:  \: or \:  \:  \: (2x - 1) = 0 \:  \:  \:  \\  \\ x = 2 \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{1}{2}  \\  \\ let \:  \:  \:  \alpha  = 2 \:  \:  \:  \: and \:  \:  \:  \:  \beta  =  \frac{1}{2}  \\  \\  \\ therefore \:  \:  \:  \: ( \alpha  - 1) {}^{( \beta  - 1)}  \:  \:  = (2 - 1) {}^{( \frac{1}{2}  - 1)}  \\  \\ ( \alpha  - 1) {}^{( \beta  - 1)}  = 1 {}^{\frac{(1 - 2)}{2} }  \\  \\ ( \alpha  - 1) {}^{( \beta  - 1)}  = 1 {}^{ \frac{ - 1}{2} }  \\  \\   ( \alpha  - 1) {}^{( \beta  - 1)}  =   \frac{1}{1 {}^{ \frac{1}{2} } }  \\  \\ ( \alpha  - 1) {}^{( \beta  - 1)}  = 1

Answered by Tomboyish44
16

Question: If α and β are the roots of the equation 2x² - 5x + 2 = 0, then

\sf (\alpha - 1)^\left({\beta - 1}\right) = ______ where (α > β).

\\

Solution:

Since the polynomial has been given, we'll try to find the zeroes (α and β) by splitting the middle term.

\\

\Longrightarrow \sf 2x^2 - 5x + 2 = 0\\ \\ \\\ \sf Sum \dashrightarrow \sf -5 \\ \\ \sf Product \dashrightarrow 4\\ \\\sf Split \dashrightarrow -4 \times -1\\ \\ \\\Longrightarrow \sf 2x^2 - 4x - x + 2 = 0\\ \\\Longrightarrow \sf 2x(x - 2) -1(x - 2) = 0\\ \\\Longrightarrow \sf (2x - 1)(x - 2) = 0\\ \\

\\

Taking the zeroes to be 'α' and 'β' we get,

\\

\Longrightarrow \sf 2x - 1 = 0\\ \\ \Longrightarrow \sf 2x = 1\\ \\ \Longrightarrow \sf x = \frac{1}{2}\\ \\

\\

Other root,

\Longrightarrow \sf x - 2 = 0\\ \\ \Longrightarrow \sf x = 2\\ \\

\\

ATQ, α > β, therefore, α = 2, and β = ¹/₂

\Longrightarrow \sf (\alpha - 1)^{\left({\beta - 1}\right)}\\ \\ \\\Longrightarrow \sf \left(2 - 1\right)^{\left(\dfrac{1}{2} \ - \ 1}\right)}\\ \\ \\\Longrightarrow \sf \left(1\right)^{\left( \dfrac{1 - 2}{2}  \right)}\\ \\ \\\Longrightarrow \sf \left(1\right)^{\left(\dfrac{-1 \ \ }{2}\right)}\\ \\ \\\Longrightarrow \sf \ \underline{\textbf{1}}

\\

The answer is 1.

Similar questions