Math, asked by Anonymous, 1 year ago

Plz Differentiate it


It is urgent

Attachments:

Answers

Answered by fanbruhh
5

 \huge \bf{ \red{hey}}


 \huge{ \mathfrak{ \pink{here \: is \: answer}}}

please see in pic

 \huge \boxed{ \boxed{ \orange{hop \: it \: helps}}}

 \huge{ \purple{thanks}}

Attachments:

fanbruhh: my pleasure
fanbruhh: dear
Answered by naincy59
4

 log(xy)  =  log \: {e}^{(x - y)}  \\  log(xy )  = (x - y) log(e \\  log(x )  +  log(y)  = (x - y)(1) \\  log(x)  +  log(y)  = (x - y) \\ d \frac{ log(x)  +  log(y)) }{dx}  =  \frac{d( x - y)}{dx }  \\ \frac{d( log(x) }{dx}  + \frac{d( log(y) }{dx}  =  \frac{d(x)}{dx}  -  \frac{d(y)}{dx}  \\   \frac{1}{y}  +  \frac{d log(y) }{dx} . \frac{dy}{?dy}  = 1 -  \frac{dy}{dx}  \\  \frac{1}{y}  +  \frac{d( log(y) }{dy} . \frac{dx}{dx}  = 1 -  \frac{dy}{dx}  \\  \frac{1}{y}  +  \frac{1}{y} . \frac{dy}{dx }  = 1 -  \frac{dy}{dx}  \\  \frac{1}{y} . \frac{dy}{dx}  +  \frac{dy}{dx}  = 1 -  \frac{1}{?x}  \\  \frac{dy}{dx}( \frac{1 + y}{y}  = ( \frac{x - 1}{x}  \\  \frac{dy}{dx }  = ( \frac{x - 1}{x} ). \frac{y}{1 + y} ) \\  \frac{dy}{dx}  =  \frac{y(x - 1)}{x(1 + y)}

Hope it will help you ☺❤☺

naincy59: welcome
Similar questions