plz do 4 and 5 help me
Attachments:
Answers
Answered by
1
Hey !!!
Q . 4
solution:-
a + b + c = 9
ab + bc + ca = 26
•°• (a + b + c ) ² = a² + b² + c² + 2ab + 2bc + 2ac
(a + b + c )² - 2ab - 2bc - 2ac = a²+ b² + c²
9² - 2 ( 26) = a² + b² + c²
81 - 52 = a²+ b² + c²
29 = a² + b² + c²
__________________________
Q. 5
solution :-
if a + b + c = 0
then, we know that , a³ + b³ + c³ = 3abc
Now from Question
a² /bc+ b²/ca + c² /ab
a³ + b³ + c³ /abc ✔[lcm taken ]
3abc /abc = 3 Prooved
______________________________
Hope it helps you !!!
@Rajukumar111
Q . 4
solution:-
a + b + c = 9
ab + bc + ca = 26
•°• (a + b + c ) ² = a² + b² + c² + 2ab + 2bc + 2ac
(a + b + c )² - 2ab - 2bc - 2ac = a²+ b² + c²
9² - 2 ( 26) = a² + b² + c²
81 - 52 = a²+ b² + c²
29 = a² + b² + c²
__________________________
Q. 5
solution :-
if a + b + c = 0
then, we know that , a³ + b³ + c³ = 3abc
Now from Question
a² /bc+ b²/ca + c² /ab
a³ + b³ + c³ /abc ✔[lcm taken ]
3abc /abc = 3 Prooved
______________________________
Hope it helps you !!!
@Rajukumar111
Answered by
1
qn 4.
a+b+c=9 and ab+bc+ca=26
(a+b+c)^2= a^2+b^2+c^2+2 (ab+bc+ca)
9^2 = (a^2+b^2+c^2)+2 (26)
so, a^2+b^2+c^2=(29)^1/2..
qn 5.
since a+b+c=0
so b+c= -a
now
(a+b+c)^3= a^3+(b+c)^3+3a (b+c)(a+b+c)
0 = a^3+b^3+c^3+3bc (b+c)
a^3+b^3+c^3= -3bc (b+c)
a^3+b^3+c^3 = 3abc.......... (1)
now come to the eq
a^2/bc+b^2/ca+c^2/ab=3
now eq (1) can be written as
(a^2×a)+(b^2×b)+(c^2×c)=3abc
(a^2×a+b^2×b+c^2×c)/abc = 3
(a^2×a)/abc + (b^2×b)/abc + (c^2×c)/abc=3
now cancel out the same in numerator and denominator
we get
a^2/bc + b^2/ac + c^2/ab = 3
hence proved....
hope it will help you.
a+b+c=9 and ab+bc+ca=26
(a+b+c)^2= a^2+b^2+c^2+2 (ab+bc+ca)
9^2 = (a^2+b^2+c^2)+2 (26)
so, a^2+b^2+c^2=(29)^1/2..
qn 5.
since a+b+c=0
so b+c= -a
now
(a+b+c)^3= a^3+(b+c)^3+3a (b+c)(a+b+c)
0 = a^3+b^3+c^3+3bc (b+c)
a^3+b^3+c^3= -3bc (b+c)
a^3+b^3+c^3 = 3abc.......... (1)
now come to the eq
a^2/bc+b^2/ca+c^2/ab=3
now eq (1) can be written as
(a^2×a)+(b^2×b)+(c^2×c)=3abc
(a^2×a+b^2×b+c^2×c)/abc = 3
(a^2×a)/abc + (b^2×b)/abc + (c^2×c)/abc=3
now cancel out the same in numerator and denominator
we get
a^2/bc + b^2/ac + c^2/ab = 3
hence proved....
hope it will help you.
Similar questions