Math, asked by shiva752, 10 months ago

plz do both the questions..


from trigonometry
class 10th​

Attachments:

Answers

Answered by kritigenie
2

Step-by-step explanation:

Answer is in the pic.

Hope it will help you!

Attachments:
Answered by ihrishi
3

Step-by-step explanation:

(i) \:  \frac{sin \theta - 2 {sin}^{3} \theta }{2 {cos}^{3} \theta -cos \theta }  = tan \theta \\  \\ LHS =  \frac{sin \theta - 2 {sin}^{3} \theta }{2 {cos}^{3} \theta -cos \theta } \\  \\  =  \frac{sin \theta(1 - 2 {sin}^{2} \theta) }{cos \theta(2 {cos}^{2} \theta -1)}  \\  \\  = \frac{sin \theta \: \times  cos2 \theta}{cos \theta \:  \times cos2 \theta} \\  \\  = \frac{sin \theta }{cos \theta  } \\  \\  = tan \theta  \\  \\ =RHS \\  \\ thus \: proved \\  \\  (ii) \:   {cos}^{2}  \theta + {cos}^{2}  \theta .{cot}^{2}  \theta  = {cot}^{2}  \theta \\  \\ LHS =   {cos}^{2}  \theta + {cos}^{2}  \theta .{cot}^{2}  \theta \\  \\  =   {cos}^{2}  \theta (1+ {cot}^{2}  \theta) \\  \\  = {cos}^{2}  \theta {cosec}^{2}  \theta \\  \\  = {cos}^{2}  \theta  \times  \frac{1}{{sin}^{2}  \theta}  \\  \\  = \frac{{cos}^{2}\theta}{{sin}^{2}  \theta}  \\  \\  =  {cot}^{2}\theta \\  \\   =RHS \\  \\ thus \: proved \\  \\

Similar questions