Physics, asked by Anonymous, 1 month ago

Plz do explain the procedure ! ASAP ​

Attachments:

Answers

Answered by shadowsabers03
13

Let \displaystyle\small\text{$\bf {v_2}$} be the velocity of the shell with respect to ground and \displaystyle\small\text{$\bf {v_1}$} be the recoil velocity of the tank, i.e., the velocity of the tank with respect to ground.

The tank moves horizontally leftwards after firing, so the recoil velocity will be,

  • \displaystyle\small\text{$\bf {v_1}=\sf{-v_1\,\hat i}$}

Given that the velocity of the shell with respect to the tank is \displaystyle\small\text{$\bf {V}$} and it makes an angle θ with horizontal, so,

\displaystyle\small\text{$\longrightarrow\bf {V}=\sf{V\cos\theta\,\hat i+V\sin\theta\,\hat j\quad\quad\dots(1)}$}

Also,

\displaystyle\small\text{$\longrightarrow\bf{V=v_2-v_1}$}

\displaystyle\small\text{$\longrightarrow\bf{V=v_2}-\sf{(-v_1\,\hat i)}$}

\displaystyle\small\text{$\longrightarrow\bf{V=v_2}+\sf{v_1\,\hat i\quad\quad\dots(2)}$}

From (1) and (2),

\displaystyle\small\text{$\longrightarrow\bf{v_2}+\sf{v_1\,\hat i=V\cos\theta\,\hat i+V\sin\theta\,\hat j}$}

\displaystyle\small\text{$\longrightarrow\bf{v_2}=\sf{(V\cos\theta-v_1)\,\hat i+V\sin\theta\,\hat j}$}

Since there is no external horizontal force acting on the system, the horizontal linear momentum of the system remains constant.

The initial horizontal linear momentum of the system is zero.

  • \displaystyle\small\text{$\bf {p_i}=\sf{0}$}

The final horizontal linear momentum of the system is,

  • \displaystyle\small\text{$\bf {p_f}=\sf{m_1}\bf{(v_1)_x}+\sf{m_2}\bf{(v_2)_x}$}

Here \displaystyle\small\text{$\bf {(v_1)_x}$} and \displaystyle\small\text{$\bf {(v_2)_x}$} are horizontal component of \displaystyle\small\text{$\bf {v_1}$} and \displaystyle\small\text{$\bf {v_2}$} respectively. So,

  • \displaystyle\small\text{$\bf {p_f}=\sf{m_1(-v_1)+m_2(V\cos\theta-v_1)}$}

Then by linear momentum conservation,

\displaystyle\small\text{$\longrightarrow\bf{p_i=p_f}$}

\displaystyle\small\text{$\longrightarrow\sf{m_1(-v_1)+m_2(V\cos\theta-v_1)=0}$}

\displaystyle\small\text{$\longrightarrow\sf{-m_1v_1+m_2(V\cos\theta-v_1)=0}$}

\displaystyle\small\text{$\longrightarrow\sf{-m_1v_1+m_2V\cos\theta-m_2v_1=0}$}

\displaystyle\small\text{$\longrightarrow\sf{m_2V\cos\theta-(m_1+m_2)v_1=0}$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{\sf{v_1=\dfrac{m_2V\cos\theta}{m_1+m_2}}}}$}

This is the recoil velocity of the tank.


Ekaro: Great!
Similar questions