Math, asked by samixachouhan, 1 month ago

Plz do it fast

I will mark as brainlist​

Attachments:

Answers

Answered by 18joel15
1

Answer:

180/3=length of each side

60= length of each side

semi perimeter= 180/2= 90

herons formula

under root (90(90-60)(90-60)(90-60))

ans = 900 UNDER ROOT 3

Answered by QianNiu
3

Question:

{\tt{ \bold {\green{A  \: traffic  \: signal \:  board \:  indicating  \: "School \:  Ahead" \:  is \:  an \:  equilateral \:  triangle \:  with  \: side \:  'a'.Find \:  the}}}} \\ { \tt{ \green{ \bold{board \: using \:  heron's \:  formula,if  \: the \:  perimeter \:  is \:  180 \:  cm. What  \: will  \: be  \: the  \: area  \: of  \: signal \:  board?}}}}

Answer:

900√3 cm^2

Explanation:

 \bold {Area \:  of \:  the  \: triangle \:  by \:  heron's  \: formula} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large{ \green{ \tt {  \sqrt{s(s - a)(s - b)(s - c)} }}}

 \tt \: Given \:  that \:  it \:  is  \: an  \: equilateral \:  triangle, \\ \tt \: So, all \:  the  \: sides  \: will  \: be  \: equal. \\  \tt \: ∴a=b=c \\  \\  \tt \: Semi perimeter=S=  \red{\frac{ Perimeter}{2}} \\ \tt \: Semi perimeter=S=  \frac{a + b + c}{2}  \\ \tt \: Semi perimeter=S=  \frac{3a}{2}  \\  \\  \tt \:  = \large{ { \tt {  \sqrt{s(s - a)(s - b)(s - c)} }}} \\  \tt \: putting \: a = b = c =  \frac{3a}{2}

 \tt \bold {Area \:  of  \: Signal \:  board:} \\  \tt \:  =  \sqrt{ \frac{3a}{2}{\huge{(}}\frac{3a}{2}  - a{\huge{)}}{\huge{(}} \frac{3a}{2}  - a{\huge{)}} {\huge{(}} \frac{3a}{2}  - a{\huge{)}}}  \\  \\  =   \tt \:  \sqrt{ \frac{3a}{2}  \times  \frac{a}{2}\times  \frac{a}{2}\times  \frac{a}{2} }  \\  \\  \tt \:  =  \sqrt{ \frac{3 {a}^{4} }{ {2}^{4} } }  \\  \\ \tt \:  =  \frac{ \sqrt{3 {a}^{2} } }{ {2}^{2} }  ⇢ i) \\  \\  \tt \:  =  \frac{ \sqrt{3 {a}^{2} } }{4}

 \tt \: If  \: perimeter \:  is \:  180  \: cm. \\  \tt \: a + a + a = 180\\  \tt \: 3a = 180\\  \tt \: a =  \frac{180}{3}  \\  \tt \bold {a= 60 \: cm} \\  \\  \tt \: Putting \:  a=60 \:  cm  \: in  \: eq. I) \\  \tt \bold{Area  \: of  \: traingle} =  \frac{ \sqrt{3 {a}^{2} } }{4}  \\  \tt \: \bold{Area  \: of  \: traingle} =  \frac{ \sqrt{3}(60) {}^{2}  }{4}  \\ \bold{Area  \: of  \: traingle} =  \frac{ \sqrt{3}  \times 3600}{4}  \\ \bold{Area  \: of  \: traingle} = 900 \sqrt{3}  {cm}^{2}

 \huge  \bold {{@QianNiu}}

Similar questions