Math, asked by wal27, 5 months ago

plz do it fasttt...... ​

Attachments:

Answers

Answered by BrainlyEmpire
231

GIVEN :–

• A function  \bf { \tan}^{ - 1} (x) .

TO FIND :–

• Differentiate form = ?

SOLUTION :–

• Let the function –

  \\  \implies\bf y = { \tan}^{ - 1} (x)  \\

• Let the function –

  \\  \implies\bf x= \tan( \theta)  \\

• Differentiate with respect to 'θ' –

 \\\implies\bf  \dfrac{dx}{d \theta}= \sec^{2} ( \theta)  \\

 \\\implies\bf  \dfrac{dx}{d \theta}= 1 + \tan^{2} ( \theta)  \\

 \\\implies\bf  \dfrac{dx}{d \theta}= 1 +x^{2}  \:  \:  \:  \:  \:  -  -  - eq.(1)\\

• Now –

  \\  \implies\bf y = { \tan}^{ - 1} ( \tan( \theta) )  \\

  \\  \implies\bf y = \theta\\

• Differentiate with respect to 'θ' –

  \\  \implies\bf  \dfrac{dy}{d \theta} = \dfrac{d\theta}{d\theta}\\

  \\  \implies\bf  \dfrac{dy}{d \theta} =1\\

• We should write this as –

  \\  \implies\bf  \dfrac{dy}{dx}  \times  \dfrac{dx}{d \theta} =1\\

• Using eq.(1) –

  \\  \implies\bf  \dfrac{dy}{dx} (1 +  {x}^{2})=1\\

  \\  \large \implies{ \boxed{\bf  \dfrac{dy}{dx}  =  \dfrac{1}{(1+{x}^{2})}}}\\

Answered by Anonymous
47

Answer:

SOLUTION :–

• Let the function –

  \\  \implies\bf y = { \tan}^{ - 1} (x)  \\

• Let the function –

  \\  \implies\bf x= \tan( \theta)  \\

• Differentiate with respect to 'θ' –

 \\\implies\bf  \dfrac{dx}{d \theta}= \sec^{2} ( \theta)  \\

 \\\implies\bf  \dfrac{dx}{d \theta}= 1 + \tan^{2} ( \theta)  \\

 \\\implies\bf  \dfrac{dx}{d \theta}= 1 +x^{2}  \:  \:  \:  \:  \:  -  -  - eq.(1)\\

• Now –

  \\  \implies\bf y = { \tan}^{ - 1} ( \tan( \theta) )  \\

  \\  \implies\bf y = \theta\\

• Differentiate with respect to 'θ' –

  \\  \implies\bf  \dfrac{dy}{d \theta} = \dfrac{d\theta}{d\theta}\\

  \\  \implies\bf  \dfrac{dy}{d \theta} =1\\

• We should write this as –

  \\  \implies\bf  \dfrac{dy}{dx}  \times  \dfrac{dx}{d \theta} =1\\

• Using eq.(1) –

  \\  \implies\bf  \dfrac{dy}{dx} (1 +  {x}^{2})=1\\

  \\  \large \implies{ \boxed{\bf  \dfrac{dy}{dx}  =  \dfrac{1}{(1+{x}^{2})}}}\\

Similar questions