Math, asked by KARTIK4937437, 1 year ago

plz do these 2 question on paper neatly so that i can understand​

Attachments:

Answers

Answered by LovelyG
10

Question: If x = 1 + √2 + √3, prove that x⁴ - 4x³ - 4x² + 16x - 8 = 0.

Solution:

 \sf x = 1 +  \sqrt{2}  +  \sqrt{3}  \\  \\ \sf \implies x - 1 =  \sqrt{2}  +  \sqrt{3}  \\  \\ \bf on \: squaring \: both \: sides -  \\  \\ \sf \implies (x - 1) {}^{2}  = ( \sqrt{2}  +  \sqrt{3} ) {}^{2}  \\  \\ \sf \implies  {x}^{2}  - 2 \: . \: x  \: . \: 1+ (1) {}^{2}  =   {( \sqrt{2} )}^{2}  + ( \sqrt{3} ) {}^{2}  + 2 \:. \:   \sqrt{2}  \: . \:  \sqrt{3}  \\  \\ \sf \implies x {}^{2}  - 2x + 1 = 2 + 3 + 2 \sqrt{6}  \\  \\ \sf \implies x {}^{2}  - 2x + 1 = 5 + 2 \sqrt{6} \\  \\ \sf \implies x {}^{2}  - 2x + 1 - 5 = 2 \sqrt{6}  \\  \\ \sf \implies  {x}^{2}  - 2x  - 4 = 2 \sqrt{6}

On squaring both the sides-

\sf \implies (x {}^{2}  - 2x  - 4) {}^{2}  =  {(2 \sqrt{6} )}^{2}  \\  \\ \sf \implies (x {}^{2})^{2}  + (  -2x) {}^{2}  + ( - 4) {}^{2} +  2*x {}^{2} *( - 2x) \\\sf +  2*( - 2x)*( - 4) + 2*( - 4)*x {}^{2}  = (2 \sqrt{6}) {}^{2}  \\  \\\sf \implies x {}^{4}  + 4x {}^{2}  + 16  - 4x {}^{3}  + 16x - 8x {}^{2}  - 24 = 0 \\  \\  \boxed{\bf  x {}^{4}   -4x {}^{3}  -  4x {}^{2}   +16x- 8 = 0}

Hence, it is proved.

_______________________

2. For second answer, refer to the attachment. Regrets for handwriting :)

Attachments:

KARTIK4937437: your
KARTIK4937437: just kidding dont take it seriously
LovelyG: :)
Anonymous: Awesome
LovelyG: Thanks :)
KARTIK4937437: amazing
KARTIK4937437: your explanation is easy to understand
KARTIK4937437: u are really helpful!!!
KARTIK4937437: thx
LovelyG: Welcome :)
Similar questions