Math, asked by hemajatt1206, 1 month ago

plz do this
don't spam otherwise ur answer will be reported ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{\dfrac{1 - coskx}{x \: sinx}  \:  \: when \:  \: x \:  \ne \: 0}  \\ \\ &\sf{\dfrac{1}{2}  \:  \: when \: x \:  =  \: 0} \end{cases}\end{gathered}\end{gathered}

Further given that,

↝  Function f(x) is continuous at x = 0

We know,

A function f(x) is said to be continuous at x = a iff

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to a}\rm f(x) = f(a) \: }}}

So, here

\red{\rm \implies\: \: \displaystyle\lim_{x \to 0}\rm f(x) = f(0) \: }

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{1 - coskx}{x \: sinx}  =  \frac{1}{2}

We know,

\boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }}

So, using this identity,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{2 {sin}^{2}\bigg[\dfrac{kx}{2} \bigg]}{x \times \bigg[\dfrac{sinx}{x} \bigg] \times x}  =  \frac{1}{2}

We know,

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}}

So, using this identity, we get

\rm :\longmapsto\:2\displaystyle\lim_{x \to 0}\rm  \frac{ {sin}^{2} \bigg[\dfrac{kx}{2} \bigg]}{ {x}^{2}  \times 1}  =  \frac{1}{2}

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{ {sin}^{2} \bigg[\dfrac{kx}{2} \bigg]}{ {x}^{2}}  =  \frac{1}{4}

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{ {sin}^{2} \bigg[\dfrac{kx}{2} \bigg]}{\bigg[\dfrac{ {k}^{2} }{4} \bigg]{x}^{2}} \times \bigg[\dfrac{ {k}^{2} }{4} \bigg]  =  \frac{1}{4}

\rm :\longmapsto\: {k}^{2} \displaystyle\lim_{x \to 0}\rm  \frac{ {sin}^{2} \bigg[\dfrac{kx}{2} \bigg]}{\bigg[\dfrac{ {k}^{2} {x}^{2}  }{4} \bigg]}  =  1

\rm :\longmapsto\: {k}^{2}  \times  {1}^{2}  = 1

\rm :\longmapsto\: {k}^{2}    = 1

\bf\implies \:k \:  =  \:  \pm \: 1

  • Hence, Option (a) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}}

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{sin {}^{n} x}{ {x}^{n} } = 1 \: }}}

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }}}

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{tan {}^{n} x}{ {x}^{n} } = 1 \: }}}

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }}}

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }}}

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: }}}

Similar questions