Math, asked by dhruv317689, 1 year ago

plz do this one hurry 13 number ​

Attachments:

Answers

Answered by Anonymous
2

Answer:

{\bold{\red{\huge{Your\:Solution}}}}

Step-by-step explanation:

Δ  ABC\:is\:a\:right\:angled\:triangle.

∠ABC = 90°.

A\:circle\:is\:drawn\:with\:AB\:as\:diameter\:intersecting\:AC\:in\:P,\\ PQ\:is\:the\:tangent\:to\:the\:circle\:which\:intersects\:BC\:at\:Q.

Join\:BP.

PQ\:and\:BQ\:are\:tangents\:drawn\:from\:an\:external\:point\:Q.

∴ PQ = BQ   -------------- (1)  (Length of tangents drawn from an external point to the circle are equal)

∠PBQ = ∠BPQ    (In a triangle, angles opposite to equal sides are equal)

Given\:that,\:AB\:is\:the\:diameter\:of\:the\:circle.

∴ ∠APB = 90°  (Angle in a semi-circle is a right angle)

∠APB + ∠BPC = 180°   (Linear pair)

∠BPC = 180° – ∠APB = 180° – 90° = 90°

Consider   ΔBPC,

∠BPC + ∠PBC + ∠PCB = 180°  (Angle sum property of a triangle)

∴ ∠PBC + ∠PCB = 180° – ∠BPC = 180° – 90° = 90°  ----------- (2)

∠BPC = 90°

∴ ∠BPQ + ∠CPQ = 90°    ...(3)

From\:equations\:(2)\:and\:(3),\:we\:get

∠PBC + ∠PCB = ∠BPQ + ∠CPQ

⇒ ∠PCQ = ∠CPQ  (Since, ∠BPQ = ∠PBQ)

Consider   ΔPQC,

∠PCQ = ∠CPQ

∴  PQ = QC ----------- (4)

From\:equations\:(1)\:and\:(4),\:we\:get

BQ = QC

Therefore,\:tangent\:at\:bisects\:the\:side\:BC.


Anonymous: Great....!!
Answered by kingofclashofclans62
0

Answer:

Step-by-step explanation:

Answer is in attachment;

Attachments:
Similar questions