Math, asked by adityavohra12, 1 month ago

plz do this question will mark as brainliest

Attachments:

Answers

Answered by user0888
28

Topic

  • Reciprocal trigonometric ratio.

\implies \csc \theta =\dfrac{1}{\sin \theta }

\implies \sec\theta=\dfrac{1}{\cos \theta}

\implies \boxed{\cot \theta =\dfrac{1}{\tan \theta}=\dfrac{\cos \theta}{\sin \theta}}

Solution

In this problem, the given expression needs to only contain \cot \theta=\dfrac{\cos \theta }{\sin \theta }.

The following is the given expression.

\dfrac{4\sin \theta -3\cos \theta }{2\sin \theta +6\cos \theta }

=\dfrac{4\sin \theta -3\cos \theta }{2\sin \theta +6\cos \theta }\times \dfrac{\frac{1}{\sin \theta }}{\frac{1}{\sin \theta}}

=\dfrac{4-3\ \boxed{\cot \theta}}{2+6\ \boxed{\cot \theta }}

=\dfrac{4-2}{2+4}

=\dfrac{1}{3}

This is the required answer.

Answered by TYKE
30

\overline{\underline{\boxed{\sf GIVEN \darr}}}

If 3 cot θ = 2, find the value of :

 \frak{ \frac{4 \:\sin \theta - 3 \: cos   \theta}{2 \: sin \theta + 6 \: cos \theta} }

\overline{\underline{\boxed{\sf SOLUTION \darr}}}

3 cot θ = 2 can be written as cot θ = 2/3 [reason : by cross multiplication]

Now, we know that according to the square relations :

  • cosec² θ - cot² θ = 1

Putting the value of cot θ we get

  • cosec² θ - (2/3)² = 1

  • cosec² θ - 4/9 = 1

Transposing - 4/9 to the other side we get + 4/9

  • cosec² θ = 1 + 4/9

  • cosec² θ = 13/9

  • cosec θ = √13/3

Now, we know that sin θ = 1/cosec θ

sin θ = 3/√13

Again, tan θ = 1/cot θ

tan θ = 3/2

Now using quotient relations we get

  \frak{tan  \theta =  \frac{sin \theta}{cos \theta} }

Putting the values of tan θ and sin θ we get

 \frak{ \frac{3}{2} =  \frac{ \frac{3}{ \sqrt{13} } }{cos \theta}  }

By cross multiplication we see

 \frak{cos \theta} =  \frac{ \cancel 3}{ \sqrt{13} }  \times  \frac{2}{ \cancel{3}}

Therefore, cos θ = 2/√13

Now, according to the given condition which is :

 \frak{ \frac{4 \:\sin \theta - 3 \: cos   \theta}{2 \: sin \theta + 6 \: cos \theta} }

Putting the values we get

 \frak{ \frac{4 \times  \frac{3}{ \sqrt{13} } - 3 \times  \frac{2}{ \sqrt{13} } }{2 \times  \frac{3}{ \sqrt{13}} + 6 \times  \frac{2}{ \sqrt{13} }  } }

According to the BODMAS RULE multiplication is followed first then addition is done

So, multiplication here then addition

  \frak{ \frac{ \frac{12}{ \sqrt{13} }  -  \frac{6}{ \sqrt{13} } }{ \frac{6}{ \sqrt{13} }  +  \frac{12}{ \sqrt{13} } } }

  \frak{ \frac{ \frac{6}{2 \sqrt{13} } }{ \frac{18}{2 \sqrt{13} } } }

  \frak{ \frac{6}{ \cancel{2 \sqrt{13}} }  \times  \frac{ \cancel{2 \sqrt{13} }}{18} }

 \frak{ \frac{6}{18}  =  \frac{1}{3} }

So 1/3 is the answer

Similar questions