Math, asked by sneha6543, 12 hours ago

plz don't scam help plz​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

If

 \sf \: a + b + c = 2, \:  {a}^{2} +  {b}^{2} +  {c}^{2} = 6 \: and \: abc =  \dfrac{1}{8}, \:

 \sf \: find \: the \: sum \: of \: digits \:of \:  {a}^{4} +  {b}^{4} +  {c}^{4} \: is

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a + b + c = 2

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  +  {c}^{2} = 6

and

\rm :\longmapsto\:abc = \dfrac{1}{8}

Now, Consider

\rm :\longmapsto\: a + b + c = 2

On squaring both sides we get

\rm :\longmapsto\: {(a + b + c)}^{2} =  {2}^{2}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ca) = 4

\rm :\longmapsto\: 6 + 2(ab + bc + ca) = 4

\rm :\longmapsto\: 2(ab + bc + ca) = 4 - 6

\rm :\longmapsto\: 2(ab + bc + ca) =  - 2

\bf\implies \:\boxed{ \bf{ \:ab + bc + ca =  - 1}}

On squaring both sides, we get

\rm :\longmapsto\: {(ab + bc + ca)}^{2}  =  {( - 1)}^{2}

\rm :\longmapsto\: {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2} + 2 {b}^{2}ac +  {2c}^{2}ab +  {2a}^{2}bc = 1

\rm :\longmapsto\: {a}^{2} {b}^{2}+{b}^{2}{c}^{2}+{c}^{2} {a}^{2} + 2abc(a + b + c) = 1

On substituting the values, we get

\rm :\longmapsto\: {a}^{2} {b}^{2}+{b}^{2}{c}^{2}+{c}^{2} {a}^{2} + 2 \times 2 \times \dfrac{1}{8}  = 1

\rm :\longmapsto\: {a}^{2} {b}^{2}+{b}^{2}{c}^{2}+{c}^{2} {a}^{2}  + \dfrac{1}{2}  = 1

\rm :\longmapsto\: {a}^{2} {b}^{2}+{b}^{2}{c}^{2}+{c}^{2} {a}^{2} = 1 - \dfrac{1}{2}

\bf\implies \:\boxed{ \bf{ \:\: {a}^{2} {b}^{2}+{b}^{2}{c}^{2}+{c}^{2} {a}^{2} = \dfrac{1}{2}}}

Now, we have

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  +  {c}^{2} = 6

On squaring both sides, we get

\rm :\longmapsto\: ({a}^{2} +  {b}^{2}  +  {c}^{2})^{2}  =  {(6)}^{2}

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2}) = 36

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 \times  \dfrac{1}{2}  = 36

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 1  = 36

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4}   = 36 - 1

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4}   = 35

 \red{\rm :\longmapsto\: Sum \: of \: digits \: of \: {a}^{4} +  {b}^{4} +  {c}^{4}   = 3 + 5 = 8}

Similar questions