Math, asked by mohit21752, 9 months ago

plz don't spam
all three​

Attachments:

Answers

Answered by tahseen619
2

Answer:

i) - √3 - √5

ii) 5 + 2√6

iii) 2√5 - 2√2

Step-by-step explanation:

Rationalizing: Rationalizing is nothing but multiply the denominator by the conjugate surd or rationalizing factors to make the rational term from the irrational term.

i) \frac{2}{ \sqrt{3} -  \sqrt{5}  }  \\  \\  \frac{2( \sqrt{3}  +  \sqrt{5}) }{( \sqrt{3} -  \sqrt{5}  )( \sqrt{3} +  \sqrt{5}  )}  \\  \\  \frac{2( \sqrt{3}  +  \sqrt{5}) }{ { (\sqrt{3}) }^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  \frac{2( \sqrt{3}  +  \sqrt{5}) }{3 - 5}  \\  \\  \frac{2( \sqrt{3}  +  \sqrt{5}  )}{ - 2}  \\  \\  - ( \sqrt{3}  +  \sqrt{5} ) \\  \\   \bold{-  \sqrt{3}  -  \sqrt{5}}

ii) \frac{ (\sqrt{3} +  \sqrt{2}  )( \sqrt{3}  + \sqrt{2} ) }{( \sqrt{3}  -  \sqrt{2}) ( \sqrt{3}  +  \sqrt{2} ) }  \\  \\  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2}  + 2 \sqrt{3} . \sqrt{2} }{ { (\sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\  \frac{5 + 2 \sqrt{6} }{1}  \\  \\  \bold{ 5 + 2 \sqrt{6} }

iii) \frac{6}{ \sqrt{5} +  \sqrt{2}  }  \\  \\  \frac{6( \sqrt{5} -  \sqrt{2} ) }{( \sqrt{5} +  \sqrt{2} )( \sqrt{5}   -  \sqrt{2} )}  \\  \\  \frac{6( \sqrt{5} -  \sqrt{2} ) }{ { (\sqrt{5} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  \frac{6( \sqrt{5}  -  \sqrt{2}  )}{5 - 2}  \\  \\  \frac{6( \sqrt{5 } -  \sqrt{2}  )}{3}  \\  \\ 2( \sqrt{5}  -  \sqrt{2} ) \\  \\ \bold{2 \sqrt{5}  - 2 \sqrt{2}}

Similar questions