plz don't spam if anyone don't know answer plz don't type
only useless person can spamm only
and answer of this Q is10
Answers
Question :–
• Find the value of given limit –
ANSWER :–
GIVEN :–
• A limit –
TO FIND :–
• Value of given limit = ?
SOLUTION :–
• Let the limit –
• Put the limit –
• It's an undefined form. Now Let's solve –
• We can write this as –
• Now Apply limit –
• Hence , The value of limit is 10.
Answer:
Question :–
• Find the value of given limit –
\begin{gathered} \\ \implies\tt \lim_{x \to1} \dfrac{x + {x}^{2} + {x}^{3} + {x}^{4} - 4}{x -1} \\ \end{gathered}
⟹
x→1
lim
x−1
x+x
2
+x
3
+x
4
−4
ANSWER :–
GIVEN :–
• A limit –
\begin{gathered} \\ \implies\tt \lim_{x \to1} \dfrac{x + {x}^{2} + {x}^{3} + {x}^{4} - 4}{x -1} \\ \end{gathered}
⟹
x→1
lim
x−1
x+x
2
+x
3
+x
4
−4
TO FIND :–
• Value of given limit = ?
SOLUTION :–
• Let the limit –
\begin{gathered} \\ \implies\tt P = \lim_{x \to1} \dfrac{x + {x}^{2} + {x}^{3} + {x}^{4} - 4}{x -1} \\ \end{gathered}
⟹P=
x→1
lim
x−1
x+x
2
+x
3
+x
4
−4
• Put the limit –
\begin{gathered} \\ \implies\tt P = \dfrac{1+ {(1)}^{2} + {(1)}^{3} + {(1)}^{4} - 4}{1 -1} \\ \end{gathered}
⟹P=
1−1
1+(1)
2
+(1)
3
+(1)
4
−4
\begin{gathered} \\ \implies\tt P = \dfrac{1+1+ 1+1- 4}{1 -1} \\ \end{gathered}
⟹P=
1−1
1+1+1+1−4
\begin{gathered} \\ \implies\tt P = \dfrac{4- 4}{1 -1} \\ \end{gathered}
⟹P=
1−1
4−4
\begin{gathered} \\ \implies\tt P = \dfrac{0}{0} \\ \end{gathered}
⟹P=
0
0
• It's an undefined form. Now Let's solve –
\begin{gathered} \\ \implies\tt P = \lim_{x \to1} \dfrac{x + {x}^{2} + {x}^{3} + {x}^{4} - 4}{x -1} \\ \end{gathered}
⟹P=
x→1
lim
x−1
x+x
2
+x
3
+x
4
−4
• We can write this as –
\begin{gathered} \\ \implies\tt P = \lim_{x \to1} \dfrac{(x - 1)({x}^{3}+2{x}^{2} +3x+4)}{(x -1)} \\ \end{gathered}
⟹P=
x→1
lim
(x−1)
(x−1)(x
3
+2x
2
+3x+4)
\begin{gathered} \\ \implies\tt P = \lim_{x \to1} \dfrac{ \cancel{(x - 1)}({x}^{3}+2{x}^{2} +3x+4)}{ \cancel{(x -1)}} \\ \end{gathered}
⟹P=
x→1
lim
(x−1)
(x−1)
(x
3
+2x
2
+3x+4)
\begin{gathered} \\ \implies\tt P = \lim_{x \to1} ({x}^{3}+2{x}^{2} +3x+4) \\ \end{gathered}
⟹P=
x→1
lim
(x
3
+2x
2
+3x+4)
• Now Apply limit –
\begin{gathered} \\ \implies\tt P ={(1)}^{3}+2{(1)}^{2} +3(1)+4\\ \end{gathered}
⟹P=(1)
3
+2(1)
2
+3(1)+4
\begin{gathered} \\ \implies\tt P =1+2+3+4\\ \end{gathered}
⟹P=1+2+3+4
\begin{gathered} \\ \implies\tt P =3+7\\ \end{gathered}
⟹P=3+7
\begin{gathered} \\ \large \implies{ \boxed{\tt P =10}}\\ \end{gathered}
⟹
P=10
• Hence , The value of limit is 10.