Math, asked by dhairyasoni, 2 months ago

plz dont copy paste and give full explanation. And dont scam or i will report​

Attachments:

Answers

Answered by VanditaNegi
5

Solution :-

 {2}^{x}  =  {4}^{y}  =  {8}^{z}  \\ {\mathtt{on \: comparing}} \\  {2}^{x}  =  {4}^{y}  \\  {2}^{x}  =  {2}^{2y}  \:  :  \:  \: {\sf{on \: comparing \: exponentially}} \\ x=2y \\ y =  \frac{x}{2}  \\ \implies {2}^{x}  =  {8}^{z}  \\  {2}^{x}  =  {2}^{3z}  \:  \: :  \: {\sf{on \: comparing \: exponentially}} \\ x = 3z \\ z =  \frac{x}{3}

Substituting Values of x, y and z

 \frac{1}{2x} +  \frac{1}{4y}  +  \frac{1}{6z}  =  \frac{24}{7}  \:  \:  \:  \: ( substitute \: values \: of \: x \: y \: and \: z)\\  \\  \frac{1}{2x}  +  \frac{1}{2x}  +  \frac{1}{2x}  =  \frac{24}{7}  \\  \\  \frac{1 + 1 + 1}{2x}  =  \frac{24}{7}  \\  \\  \frac{3}{2x}  =  \frac{24}{7}  \\  \\ x =  \frac{7}{16}

 \red{ \tt{putting \: value \: of \: x \: in \: z =  \frac{x}{3} }} \\

z =  \frac{x}{3}  \\  \\ z =  \frac{7}{16} \times  \frac{1}{3}  =  \frac{7}{48}

HOPE IT HELPS YOU!✨✌️

Similar questions