Math, asked by harshilmehra1308, 19 days ago

plz explain step by step ​

Attachments:

Answers

Answered by misty007
2

Answer:

24/5

Step-by-step explanation:

HOPE IT HELPS YOU PLEASE MAKE MY ANSWER THE BRANLIEST.

(Tap on the picture to see the whole thing)

Attachments:
Answered by mathdude500
3

Question :-

Simplify :

\rm \:  {\bigg( {2}^{ - 1}  +  {3}^{ - 1}  \bigg) }^{ - 1}  \div  {4}^{ - 1}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {\bigg( {2}^{ - 1}  +  {3}^{ - 1}  \bigg) }^{ - 1}  \div  {4}^{ - 1}  \\

We know,

\boxed{ \rm{ \: {x}^{ - n} \:  =  \:  \frac{1}{ {x}^{n} }  \: }} \\

So, using this result, we get

\rm \:  =  \:  {\bigg(\dfrac{1}{2}  + \dfrac{1}{3}  \bigg) }^{ - 1}  \div  \dfrac{1}{4}   \\

\rm \:  =  \:  {\bigg(\dfrac{3 + 2}{6}  \bigg) }^{ - 1}  \times 4   \\

\rm \:  =  \:  {\bigg(\dfrac{5}{6}  \bigg) }^{ - 1}  \times 4   \\

We know,

\boxed{ \rm{ \: {\bigg[\dfrac{x}{y} \bigg]}^{ - n}  =  {\bigg[\dfrac{y}{x} \bigg]}^{n}  \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{6}{5} \times 4 \\

\rm \:  =  \: \dfrac{24}{5} \\

Hence,

\color{green}\rm\implies \:\boxed{ \rm{ \:  {\bigg( {2}^{ - 1}  +  {3}^{ - 1}  \bigg) }^{ - 1}  \div  {4}^{ - 1} =  \frac{24}{5} \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions