Math, asked by affin1234, 30 days ago

plz find its answer fastly​

Attachments:

Answers

Answered by kaushik05
5

Given:

p(x) = 2x² - x + 5 .

 \alpha  \: and \:  \beta  \: are \: the \ \:  \: zeroes

To find :

 { \alpha }^{ - 1}  +  { \beta }^{ - 1}  =  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\

Solution :

p(x) = 2x² - x + 5

Here a= 2 , b = -1 and c = 5

 \star \:  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - 1)}{2}  =  \frac{1}{2 }  \\  \\  \star \:  \alpha  \beta  =  \frac{c}{a}  =  \frac{5}{2}

Now ,

 \star \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha +  \beta  }{ \alpha  \beta }  \\  \\  \implies \:  \frac{ \frac{1}{2} }{ \frac{5}{2} }  =  \frac{1}{5}

Hence , the value is 1/5.

Similar questions