Physics, asked by chiragdhoot03, 9 months ago

plz find the equivalent capacitance between A and B of iii and iv

Attachments:

Answers

Answered by Anonymous
10

To Find :

▪ Equivalent capacitance between A and B.

Formula :

For series connection :

\bigstar\:\underline{\boxed{\bf{\red{\dfrac{1}{C_s}=\dfrac{1}{C_1}+\dfrac{1}{C_2}}}}}

For parallel connection :

\bigstar\:\underline{\boxed{\bf{\blue{C_p=C_1+C_2}}}}

Calculation :

Answer-iii) :

Equivalent of part A (series) :

\implies\sf\:\dfrac{1}{C_1}=\dfrac{1}{3C}+\dfrac{1}{3C}+\dfrac{1}{3C}\\ \\ \implies\sf\:\dfrac{1}{C_1}=\dfrac{3}{3C}\\ \\ \implies\bf\:C_1=C

Equivalent of part B (parallel) :

\implies\sf\:C_2=C_1+C\\ \\ \implies\sf\:C_2=C+C\\ \\ \implies\bf\:C_2=2C

Equivalent of part C (series) :

\implies\sf\:\dfrac{1}{C_3}=\dfrac{1}{C_2}+\dfrac{1}{2C}\\ \\ \implies\sf\:\dfrac{1}{C_3}=\dfrac{1}{2C}+\dfrac{1}{2C}=\dfrac{2}{2C}\\ \\ \implies\bf\:C_3=C

Equivalent of part D (parallel) :

\implies\sf\:C_4=C_3+C\\ \\ \implies\sf\:C_4=C+C\\ \\ \implies\bf\:C_4=2C

Equivalent of part E (series) :

\implies\sf\:\dfrac{1}{C_{eq}}=\dfrac{1}{C_4}+\dfrac{1}{C}\\ \\ \implies\sf\:\dfrac{1}{C_{eq}}=\dfrac{1}{2C}+\dfrac{1}{C}=\dfrac{1+2}{2C}\\ \\ \implies\underline{\boxed{\bf{\pink{C_{eq}=\dfrac{2C}{3}}}}}\:\red{\bigstar}

Answer-iv) :

Equivalent of part A (series) :

\implies\sf\:\dfrac{1}{C_1}=\dfrac{1}{4C}+\dfrac{1}{2C}+\dfrac{1}{C}\\ \\ \implies\sf\:\dfrac{1}{C_1}=\dfrac{1+2+4}{4C}\\ \\ \implies\bf\:C_1=\dfrac{4C}{7}

Equivalent of part B (series) :

\implies\sf\:\dfrac{1}{C_2}=\dfrac{1}{2C}+\dfrac{1}{3C}+\dfrac{1}{C}\\ \\ \implies\sf\:\dfrac{1}{C_2}=\dfrac{3+2+6}{6C}\\ \\ \implies\bf\:C_2=\dfrac{6C}{11}

Equivalent of part C (series) :

\implies\sf\:\dfrac{1}{C_3}=\dfrac{1}{C}+\dfrac{1}{2C}+\dfrac{1}{C}\\ \\ \implies\sf\:\dfrac{1}{C_3}=\dfrac{2+1+2}{2C}\\ \\ \implies\bf\:C_3=\dfrac{2C}{5}

Net equivalent (parallel) :

\implies\sf\:C_{eq}=C_1+C_2+C_3\\ \\ \implies\sf\:C_{eq}=\dfrac{4C}{7}+\dfrac{6C}{11}+\dfrac{2C}{5}\\ \\ \implies\sf\:C_{eq}=\dfrac{220C+210C+154C}{385}\\ \\ \implies\sf\:C_{eq}=\dfrac{584C}{385}\\ \\ \implies\underline{\boxed{\bf{\orange{C_{eq}\approx \dfrac{3C}{2}}}}}\:\green{\bigstar}

Attachments:
Similar questions