Math, asked by bkumud56, 9 months ago

plz give ans fast
plz fast very argent​

Attachments:

Answers

Answered by waqarsd
1

Answer:

\large{\bold{(d)\;\;\frac{3}{2}}}

Step-by-step explanation:

Given\\\\\frac{log49\sqrt{7}+log25\sqrt{5}-log4\sqrt{2}}{log17.5}\\\\=\frac{log 7^2.7^\frac{1}{2}+log 5^2.5^\frac{1}{2}-log 2^2.2^\frac{1}{2}}{log 17.5}\\\\=\frac{log7^\frac{3}{2}+log 5^\frac{3}{2}-log2^\frac{3}{2}}{log17.5}\\\\=\frac{\frac{3}{2}log7+\frac{3}{2}log5-\frac{3}{2}log3}{log\frac{35}{2}}\\\\=(\frac{3}{2})\frac{log7+log5-log2}{log\frac{35}{2}}\\\\

=\frac{3}{2}\frac{(log(7\times 5)-log2)}{log\frac{35}{2}}\\\\=\frac{3}{2}\frac{(log35-log2)}{log\frac{35}{2}}\\\\=\frac{3}{2}\frac{(log\frac{35}{2})}{log\frac{35}{2}}\\\\=\frac{3}{2}\\\\\\\bold{FORMULAE}\\\\a^x\times a^y=a^{x+y}\\\\log a^x=xloga\\\\loga+logb=logab\\\\loga-logb=log\frac{a}{b}\\

HOPE IT HELPS

Similar questions