plz give ans plzz ...it was very important to me
Answers
Answer- The above question is from the chapter 'Introduction to Trigonometry'.
Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.
Trigonometric Ratios:
sin θ = Perpendicular/Hypotenuse
cos θ = Base/Hypotenuse
tan θ = Perpendicular/Base
cosec θ = Hypotenuse/Perpendicular
sec θ = Hypotenuse/Base
cot θ = Base/Perpendicular
Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ.
Trigonometric Identities:
1. sin²θ + cos²θ = 1
2. sec²θ - tan²θ = 1
3. cosec²θ - cot²θ = 1
Given question: Prove that- 2 cos² θ + = 2.
Solution: L.H.S = 2 cos² θ +
= 2 cos² θ +
= 2 cos² θ + 2 sin² θ
= 2 (cos² θ + sin² θ)
= 2 × 1
= 2
= R.H.S.
Formulae Used:
1) cosec²θ - cot²θ = 1
⇒ cosec²θ = 1 + cot²θ
2) cosec²θ =
3) sin²θ + cos²θ = 1
To ᴘʀoᴠᴇ:
- 2cos²θ + [ 2/( 1 + cot²θ ) ] = 2
Sᴏʟᴜᴛɪᴏɴ:
2cos²θ + [ 2/( 1 + cot²θ ) ] = 2
Taking LHS
And simplifying by using
1 + cot²θ = cosec²θ
→ 2cos²θ + [ 2/cosec²θ ]
→ 2cos²θ + [ 2 × ( 1/cosec²θ ) ]
We know that
1/cosecθ = sinθ
→ 2cos²θ + 2sin²θ
Taking common
→ 2( cos²θ + sin²θ )
Simplifying using first identity
sin²θ + cos²θ = 1
→ 2 ( 1 ) = 2
Comparing with RHS
2 = 2
LHS = RHS
Hence proved
Mᴏʀᴇ ɪɴꜰᴏʀᴍᴀᴛɪᴏɴ:
- sin²θ + cos²θ = 1
→ sin²θ = 1 - cos²θ
→ sinθ = ±√1 - cos²θ
→ cos²θ = 1 - sin²θ
→ cosθ = ±√1 - sin²θ
- sec²θ - tan²θ = 1
→ sec²θ = 1 + tan²θ
→ secθ = ±√1 + tan²θ
→ tan²θ = sec²θ - 1
→ tanθ = ±√sec²θ - 1
- cosec²θ - cot²θ = 1
→ cosec²θ = 1 + cot²θ
→ cosecθ = ±√1 + cot²θ
→ cot²θ = cosec²θ - 1
→ cotθ = ±√cosec²θ - 1