Math, asked by kmaninder001, 4 months ago

plz give answer as soon as possible..​

Attachments:

Answers

Answered by hafiza11
1

in the numerator and denominator use the formula

(a+b)(a-b)=a2-b2

u will get

20-3=a+√15b

17=a+√15b

is the answer

brainliest?


kmaninder001: can u give written solutiom
kmaninder001: yes i will mark brainliest
kmaninder001: but plz send written
kmaninder001: i have practiced much
kmaninder001: many times
kmaninder001: but not able to do it
kmaninder001: plz send written solution
Answered by Anonymous
74

Answer :-

\sf \frac{2\sqrt{5} +\sqrt{3}}{2\sqrt{5} - \sqrt{3}} + \frac{2\sqrt{5} - \sqrt{3}}{2\sqrt{5} + \sqrt{3}} = a + \sqrt{15}b

Rationalizing the denominator -

\sf = \big(\frac{2\sqrt{5} +\sqrt{3}}{2\sqrt{5} - \sqrt{3}} \times \frac{2\sqrt{5}  +  \sqrt{3}}{2\sqrt{5}   + \sqrt{3}}) + (\frac{2\sqrt{5} - \sqrt{3}}{2\sqrt{5} + \sqrt{3}} \times \frac{2\sqrt{5}  - \sqrt{3}}{2\sqrt{5} - \sqrt{3}}\big)

\sf = \frac{(2 \sqrt{5} +\sqrt{3} ) ( 2 \sqrt{5} +\sqrt{3})}{(2 \sqrt{5} +\sqrt{3})(2 \sqrt{5}  - \sqrt{3})} + \frac{(2 \sqrt{5} - \sqrt{3} ) ( 2 \sqrt{5}  - \sqrt{3})}{(2 \sqrt{5} - \sqrt{3})(2 \sqrt{5} + \sqrt{3})}

\sf = \frac{20 + 3 + 4\sqrt{15} }{20 - 3} + \frac{ 20 + 3 - 4\sqrt{15}}{20 - 3}

\sf = \frac{23 + 23}{17}

\sf = \frac{46}{17}

Comparing LHS and RHS -

\sf \frac{46}{17} = a + \sqrt{15} b

\boxed{\sf a =  \frac{46}{17}}

\boxed{\sf b = 0}


Anonymous: Nice~
Anonymous: Isha?
Anonymous: :)
kmaninder001: thnk
Similar questions