Math, asked by KARTIK4937437, 1 year ago

plz give answer fast​

Attachments:

Answers

Answered by LovelyG
11

Question: If \sf a^{x} = b^{y}=c^{z} and b² = ac, prove that \sf y = \dfrac{2xz}{x + z}

Solution:

\large{\underline{\underline{\sf \star \:  Consider \: that :}}}

 \sf a^{x} = b^{y}=c^{z} = k  \:  \: (suppose)

Therefore,

 \sf a^{x} = k  \\ \implies \sf a = k {}^{ \frac{1}{x} }  \:  \:  ....(i) \\  \\  \sf b^{y}= k\\ \implies  \sf b = k ^{\frac{1}{y}} \:  \: (ii) \\  \\ \sf c^{z} = k \\ \implies \sf c = k  {}^{ \frac{1}{z} } \:  \:   (iii)

Now, take b² =ac and put the above values -

 \implies \sf b {}^{2}   =  ac \\  \\ \implies \sf (k {}^{ \frac{1}{y} } ) {}^{2}  =  (k {}^{ \frac{1}{x} } ) \times (k {}^{ \frac{1}{z} } ) \\  \\ \implies \sf (k ){}^{ \frac{2}{y} }  = (k) {}^{ \frac{1}{x}  +  \frac{1}{z} }  \\  \\ \bf on \: comparing \: both \: sides -  \\  \\ \implies \sf  \frac{2}{y}  =  \frac{1}{x}  +  \frac{1}{z}  \\  \\ \implies \sf  \frac{2}{y}  =  \frac{x + z}{xz}  \\  \\ \bf on \: cross \: multiplying -  \\  \\ \implies \sf y(x + z) =  2xz \\  \\ \boxed{ \bf  y =  \frac{2xz}{x + z}}

Hence, it is proved.

Similar questions