Math, asked by kanchansingh0886, 4 months ago

plz give answer of this question.☺️☺️​

Attachments:

Answers

Answered by pihu892
2

prove that a quadrilateral is a parallelogram if its diagonals bisect each other

Proof: In ∆OPQ and ∆ORS,

OP = OR, OQ = OS (Given);

∠POQ = ∠ROS (Opposite angles).

Therefore, ∆OPQ ≅ ∆ORS (by SAS criterion of congruency)

Therefore, ∠OPQ = ∠ORS (CPCTC).

So, PQ ∥ SR (From equal alternate angles).

Similarly, from ∆OQR and ∆OSP we get PS ∥ QR.

Therefore, PQRS is a parallelogram.

Answered by Expert0204
5

\tt{\huge{\purple{Question:-}}}

\orange{Prove\: that\: a \:quadrilateral}

\orange{\:is \:a\: parallelogram\: if\: the\: diagonal \:bisect  \:each\: other }\\

༄༄ Solution ༄༄

\tt{\huge {\blue {\underline{\underline{Given:-}}}}}

ABCD is a quadrilater

AB and BD diagonal bisect each other

\therefore AO = OC

BO = OD

\tt{\huge {\pink {\underline{\underline{To\:prove:-}}}}}

ABCD is a ||gm

\tt{\huge {\green {\underline{\underline{Solution:-}}}}}

 In\: ∆AOB \: and \: ∆DOC \:

\:\:\:\:\:\:\:\:\:\:      AO = OC \:\: [given]

\:\:\: \angle AOB = \angle DOS \:\:    \\   \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:[vertically\:opposite\: angle]

\:\:\:\:\:\:\:\:\:\:      AO = OC \:\: [given]

 \:\:\:\:\:\:\:\:\:\:\: ∆AOB \:congurant\: ∆DOC [by\:SAS\: rule ]

By C.P.C.T

 \:\:\:\:\:\:\:\:\:\:\:\: \angle OAB = \angle OCD

But they are alternate interior angle hence AB||DC

Similarly, AD||BC

Therefore ABCD is a ||gm [Because all side of ||gm are parallel]

\purple{\huge{\underline{\underline{Hence \:proved}}}}

Attachments:
Similar questions