Physics, asked by pushtikharadi, 2 months ago

plz give correct ans . Don't give useless answers. ​

Attachments:

Answers

Answered by Anonymous
54

Topic :- Basic mathematics

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\:\sf \cos (75^{\circ})

\longrightarrow\:\:\sf \cos (45^{\circ} + 30^{\circ})

\footnotesize\:\bullet\:\underline{\rm [ \because \: \cos(A + B) = \cos A \cos B - \sin A \sin B ] : }

\longrightarrow\:\:\sf \cos 45^{\circ}\cos 30^{\circ}  - \sin 45^{\circ}\sin30^{\circ} \\

\longrightarrow\:\:\sf  \dfrac{1}{ \sqrt{2} } . \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{ \sqrt{2} }. \dfrac{1}{2} \\

\longrightarrow\:\:\sf  \dfrac{ \sqrt{3} }{ 2\sqrt{2} }   - \dfrac{1}{2 \sqrt{2} }\\

\longrightarrow\:\: \underline{  \underline{\sf  \dfrac{ \sqrt{3}  - 1}{ 2\sqrt{2} } }}\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\:\sf \sin (15^{\circ}) \\

\longrightarrow\:\:\sf \sin (45^{\circ} -30^{\circ} ) \\

\footnotesize\:\bullet\:\underline{\rm [ \because \: \sin(A  -  B) = \sin A \cos B - \cos A \sin B ] : }

\longrightarrow\:\:\sf \sin 45^{\circ}\cos 30^{\circ}  - \cos 45^{\circ}\sin30^{\circ} \\

\longrightarrow\:\:\sf  \dfrac{1}{ \sqrt{2} } . \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{ \sqrt{2} }. \dfrac{1}{2} \\

\longrightarrow\:\:\sf  \dfrac{ \sqrt{3} }{ 2\sqrt{2} }   - \dfrac{1}{ 2\sqrt{2} }\\

\longrightarrow\:\: \underline{ \underline{\sf  \dfrac{ \sqrt{3}  - 1}{ 2\sqrt{2} }}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\:\sf \sin (75^{\circ}) \\

\longrightarrow\: \: \sf\sin(45^{\circ} +30^{\circ} ) \\

\footnotesize\:\bullet\:\underline{\rm [ \because \: \sin(A  +  B) = \sin A \cos B  +  \cos A \sin B ] : }

\longrightarrow\: \: \sf\sin45^{\circ}  \cos30^{\circ}  + \cos45^{\circ}\sin 30^{\circ}  \\

\longrightarrow\:\:\sf  \dfrac{1}{ \sqrt{2} } . \dfrac{ \sqrt{3} }{2}   +  \dfrac{1}{ \sqrt{2} }. \dfrac{1}{2} \\

\longrightarrow\:\:\sf  \dfrac{ \sqrt{3} }{ 2\sqrt{2} }  +  \dfrac{1}{ 2\sqrt{2} }\\

\longrightarrow\:\:\sf \underline{ \underline{\dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\:\sf \cos (105^{\circ})

\longrightarrow\:\:\sf \cos (60^{\circ} + 45^{\circ})

\footnotesize\:\bullet\:\underline{\rm [ \because \: \cos(A  +  B) = \cos A \cos B   -   \sin A \sin B ] : }

\longrightarrow\:\:\sf \cos 60^{\circ}  \cos 45^{\circ} + \sin 60^{\circ} \sin 45^{\circ} \\

\longrightarrow\:\:\sf  \dfrac{1}{2}   .  \dfrac{1}{ \sqrt{2} }  -  \dfrac{ \sqrt{3} }{2} .  \dfrac{1}{ \sqrt{2} }  \\

\longrightarrow\:\:\sf \dfrac{1}{2 \sqrt{2} }   -  \dfrac{ \sqrt{3} }{2 \sqrt{2} }  \\

\longrightarrow\:\: \underline{ \underline{\sf \dfrac{1 -  \sqrt{3} }{2 \sqrt{2}}} }\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{0.5mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions