Physics, asked by ruhul84, 4 months ago

plz give correct answer## don't spam here​

Attachments:

Answers

Answered by BrainlyEmpire
4

Consider the \sf{n} particles having masses \sf{m_i} each and moving with velocities \bf{v_i} each, where \sf{i=1,\ 2,\ 3,\,\dots\,,\ n.}

Then the net momentum:-

\sf{\longrightarrow\mathbf{p_1}=m_1\mathbf{v_1}+m_2\mathbf{v_2}+m_3\mathbf{v_3}+\,\dots\,+m_n\mathbf{v_n}}

or,

\displaystyle\sf{\longrightarrow \mathbf{p_1}=\sum_{i=1}^nm_i\mathbf{v_i}\quad\quad\dots(1)}

The velocity of the center of mass of these particles,

\longrightarrow\mathbf{\bar v}=\dfrac{\displaystyle\mathsf{\sum_{i=1}^nm_i}\mathbf{v_i}}{\displaystyle\mathsf{\sum_{i=1}^nm_i}}

\longrightarrow\mathbf{\bar v}\displaystyle\mathsf{\sum_{i=1}^nm_i}=\displaystyle\mathsf{\sum_{i=1}^nm_i}\mathbf{v_i}\mathsf{\quad\quad\dots(2)}

Now consider the single particle whose mass is the sum of masses of those \sf{n} particles.

\displaystyle\sf{\longrightarrow M=\sum_{i=1}^nm_i}

and this particle is moving with the velocity of the center of mass of the particles.

\bf{\longrightarrow V=\bar v}

Then, momentum of this single particle,

\sf{\longrightarrow \mathbf{p_2}=M\mathbf{V}}

\displaystyle\sf{\longrightarrow \mathbf{p_2}=\mathbf{\bar v}\sum_{i=1}^nm_i}

From (2),

\displaystyle\sf{\longrightarrow\mathbf{p_2}=\sum_{i=1}^nm_i\mathbf{v_i}}

and from (1), we get,

\displaystyle\bf{\longrightarrow\underline{\underline{p_1=p_2}}}

Hence the Proof!

Answered by BʀᴀɪɴʟʏAʙCᴅ
1

☘️ See the attachment picture for Explanation.

\Large\mathbb\pink{THANKS} \\

\Large\mathbb\green{HOPE\: IT'S\: HELPFUL} \\

Attachments:
Similar questions