Physics, asked by ruhul84, 4 months ago

plz give correct answer## don't spam here​

Attachments:

Answers

Answered by BrainlyEmpire
1

Given Integrand:-

 \displaystyle \sf \int  \dfrac{dx}{(x - 1) \sqrt{x + 2} }

Let t² = x + 2.

Differentiating w.r.t x on both sides:-

\longrightarrow 2t. dt = dx

Thus,

 \implies \ \displaystyle \sf \int  \dfrac{2 \cancel{t} }{( {t}^{2} - 2  - 1) \sqrt{ \cancel{{t}^{2} }} }  dt \\  \\ \implies \ \displaystyle \sf 2\int  \dfrac{dt}{ {t}^{2}  - 3} \\  \\ \implies \ \displaystyle \sf 2\int  \dfrac{dt}{ {t}^{2}  - ( \sqrt{3}) {}^{2}  }

Of the form,

 \star \ \boxed{ \boxed{ \sf \int  \dfrac{dx}{  {x}^{2} -  {a}^{2}  }  =  \dfrac{1}{2a} log  \bigg| \frac{x - a}{x + a}  \bigg|   }}

Thus,

 \implies \sf \:  \dfrac{1}{2 \sqrt{3} } log \bigg( \dfrac{x -  \sqrt{3} }{x +  \sqrt{3} }  \bigg)  + C

Answered by BʀᴀɪɴʟʏAʙCᴅ
0

☘️ See the attachment picture for Explanation.

\Large\mathbb\pink{THANKS} \\

\Large\mathbb\green{HOPE\: IT'S\: HELPFUL} \\

Attachments:
Similar questions