Math, asked by palakchoudhary88, 6 months ago

plz give correct answers q 2​

Attachments:

Answers

Answered by shadowsabers03
9

Given,

\displaystyle\longrightarrow A=\left [\begin{array}{cc}x&3\\y&3\end {array}\right]

such that,

\displaystyle\longrightarrow A^2=3I

\displaystyle\longrightarrow\left [\begin {array}{cc}x^2+3y&3(x+3)\\y(x+3)&3y+9\end{array}\right]=\left [\begin {array}{cc}3&0\\0&3\end{array}\right]

Equating a_{12} and a_{22},

\displaystyle\longrightarrow 3x+9=0

\displaystyle\longrightarrow\underline {\underline {x=-3}}

and,

\displaystyle\longrightarrow 3y+9=3

\displaystyle\longrightarrow\underline {\underline {y=-2}}

Answered by BrainlyNinja15
4

\huge\underline{\underline{\bold{\pink{solution}}}}

Given,

\sf{\implies  A=\left [\begin{array}{cc}x&3\\y&3\end {array}\right]}

\sf{ \implies A^2=3I}

\sf{ \implies \left [\begin {array}{cc}x^2+3y&3(x+3)\\y(x+3)&3y+9\end{array}\right]=\left [\begin {array}{cc}3&0\\0&3\end{array}\right]}

Equating

 \\  a_{12} \: and \:\: a_{22},

\sf{\implies  3x+9=0}

 \rm{\red{ \boxed{ \purple{\underline{x=-3}}}}}

\\ \\ \\

\rm{3y+9=3}

\rm{\red{ \boxed{ \purple{y=-2}}}} \\ \\ \\ \\ \large{\purple{\mathfrak{x= -3\: , y= -2.}}}

____________________

Similar questions