Math, asked by oOosnowflakeoOo, 5 days ago

plz give me answer plz

Attachments:

Answers

Answered by akshaykumarkumar201
1

Answer:

1 ) on further calculation D2 = 20cm

2) therefore, the length of each side of rhombus is 26cm

3) perimeter of rhombus is 104cm

Answered by mathdude500
5

\large\underline{\sf{Solution-43}}

Given that

  • Side of rhombus, a = 20 cm

  • Length of one diagonal, x = 24 cm

Let assume that

  • Length of second diagonal be y cm

We know,

In rhombus, side a, and diagonals x and y are connected by the relationship

\boxed{ \rm{ \: {4a}^{2} =  {x}^{2} +  {y}^{2}  \: }} \\

So, on substituting the values, we get

\rm \: 4 \times  {20}^{2} =  {24}^{2} +  {y}^{2}  \\

\rm \: 4 \times  400 =  576 +  {y}^{2}  \\

\rm \: 1600 =  576 +  {y}^{2}  \\

\rm \: 1600  - 576  = {y}^{2}  \\

\rm \:  {y}^{2} = 1024 \\

\rm\implies \:\boxed{ \rm{ \:y \:  =  \: 24 \: cm \: }} \\

Now, Area of rhombus is given by

\rm \: Area_{(rhombus)} \:  =  \: \dfrac{1}{2} \times x \times y \\

\rm \: Area_{(rhombus)} \:  =  \: \dfrac{1}{2} \times 20 \times 24 \\

\rm\implies \:\boxed{ \rm{ \:Area_{(rhombus)} \:  =  \: 240 \:  {cm}^{2}  \: }} \\

 \red{\large\underline{\sf{Solution-44}}}

Given that,

  • Area of rhombus = 480 sq. cm

  • Length of one diagonal, x = 48 cm

Let assume that

  • Length of other diagonal is y cm

We know,

\rm \: Area_{(rhombus)} \:  =  \: \dfrac{1}{2} \times x \times y \\

\rm \: 480 \:  =  \: \dfrac{1}{2} \times 48 \times y \\

\rm\implies \:\boxed{ \rm{ \:y \:  =  \: 20 \: cm \:  \: }} \\

Let assume that

  • Side of rhombus = a cm

We know,

In rhombus, side a, and diagonals x and y are connected by the relationship

\boxed{ \rm{ \: {4a}^{2} =  {x}^{2} +  {y}^{2}  \: }} \\

On substituting the values of x and y, we get

\rm \:  {4a}^{2} =  {48}^{2} +  {20}^{2}  \\

\rm \:  {4a}^{2} = 2304 +  400  \\

\rm \:  {4a}^{2} = 2704  \\

\rm \:  {a}^{2} = 676  \\

\rm \:  {a}^{2} =  {26}^{2}   \\

\rm\implies \:\boxed{ \rm{ \:a \:  =  \: 26 \: cm \: }} \\

Now,

\rm \: Perimeter_{(rhombus)} \:  =  \: 4 \times a \\

\rm \: Perimeter_{(rhombus)} \:  =  \: 4 \times 26 \\

\rm\implies \:\boxed{ \rm{ \:\rm \: Perimeter_{(rhombus)} \:  =  \: 104 \:  cm \:  \: }}  \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions
Math, 8 months ago