plz...give me fast ans
Attachments:
Shanaya42228:
.....
Answers
Answered by
4
____________________________________________________________
Hey Mate !!
Here's your answer !!
Given: OT = 7 cm, OP = 25 cm
Consider Δ POT
= OT² + PT² = OP²
= OP² - OT² = PT²
= PT² = 25² - 7²
= PT² = 625 - 49
= PT² = 576
= PT = √576 = 24 cm
Since Tangents drawn from an external point are equal,
= PT = PT¹ = 24 cm
Consider Δ TOP
= ∠ TOP = 90° ( Since Tangents are perpendicular to the Radius )
= ∠ TPO = 30°
Therefore by Angle sum property of Δ TOP we get,
= ∠ TOP + ∠ TPO + ∠ POT = 180°
= 90° + 30° + ∠ POT = 180°
= 120° + ∠ POT = 180°
= ∠ POT = 180° - 120°
= ∠ POT = 60°
Hope this helps !!
Cheers !!
___________________________________________________________
# Kalpesh :)
____________________________________________________________
Hey Mate !!
Here's your answer !!
Given: OT = 7 cm, OP = 25 cm
Consider Δ POT
= OT² + PT² = OP²
= OP² - OT² = PT²
= PT² = 25² - 7²
= PT² = 625 - 49
= PT² = 576
= PT = √576 = 24 cm
Since Tangents drawn from an external point are equal,
= PT = PT¹ = 24 cm
Consider Δ TOP
= ∠ TOP = 90° ( Since Tangents are perpendicular to the Radius )
= ∠ TPO = 30°
Therefore by Angle sum property of Δ TOP we get,
= ∠ TOP + ∠ TPO + ∠ POT = 180°
= 90° + 30° + ∠ POT = 180°
= 120° + ∠ POT = 180°
= ∠ POT = 180° - 120°
= ∠ POT = 60°
Hope this helps !!
Cheers !!
___________________________________________________________
# Kalpesh :)
____________________________________________________________
Answered by
4
Hey !!
HERE is your solution....,,
Given :-
OT = OT' = 7cm. .......( radius )
OP = 25cm
angle OPT = 30°
PT = PT' = ?
angle POT = ?
As we know, Tangent of circle form right angle with radius.
so, angle OTP = 90°
Hence ∆OPT is a right angled triangle.
OP^2 = OT^2+TP^2
TP^2 = OP^2 - OT^2
= (25)^2 - (7)^2
= 625 - 49
= 567
TP = √576
TP = 24
PT = PT' = 24 cm
PT'= 24cm
Angle OPT' = 30
Angle OPT' = Angle OPT = 30
Angle TPT' = Angle OPT + Angle OPT'
= 30 + 30
= 60
Angle TPT' + Angle TOT' = 180
60 + Angle TOT' = 180
Angle TOT' = 180 - 60
Angle TOT' = 120°
Angle TOP = Angle T'OP
Angle TOP + Angle T'OP = Angle TOT'
2Angle TOP = 120
Angle TOP = 120/2
Angle TOP = 60°
HOPE IT HELPS YOU....
THANKS ^-^
HERE is your solution....,,
Given :-
OT = OT' = 7cm. .......( radius )
OP = 25cm
angle OPT = 30°
PT = PT' = ?
angle POT = ?
As we know, Tangent of circle form right angle with radius.
so, angle OTP = 90°
Hence ∆OPT is a right angled triangle.
OP^2 = OT^2+TP^2
TP^2 = OP^2 - OT^2
= (25)^2 - (7)^2
= 625 - 49
= 567
TP = √576
TP = 24
PT = PT' = 24 cm
PT'= 24cm
Angle OPT' = 30
Angle OPT' = Angle OPT = 30
Angle TPT' = Angle OPT + Angle OPT'
= 30 + 30
= 60
Angle TPT' + Angle TOT' = 180
60 + Angle TOT' = 180
Angle TOT' = 180 - 60
Angle TOT' = 120°
Angle TOP = Angle T'OP
Angle TOP + Angle T'OP = Angle TOT'
2Angle TOP = 120
Angle TOP = 120/2
Angle TOP = 60°
HOPE IT HELPS YOU....
THANKS ^-^
Similar questions