Math, asked by princeyadav26, 1 year ago

plz give me solution step by step​

Attachments:

Answers

Answered by Anonymous
27

\huge{\mathfrak{Question:-}}

\large{\sf{\frac{tan\;A+tan\;B}{cot\;A+cot\;B}=tan\;A.\;tan\;B}}

\huge{\mathfrak{Solution:-}}

\large{\sf{\frac{tan\;A+tan\;B}{cot\;A+cot\;B}=tan\;A.\;tan\;B}}

\large{\sf{\frac{tan\;A+tan\;B}{cot\;A+cot\;B}}}

\large{\sf{\implies\frac{tan\;A+tan\;B}{\frac{1}{tan\;A}+\frac{1}{tan\;B}}}\;\;\;\; \Big(\because cot\;x = \frac{1}{tan\;x}\Big)}

\large{\sf{\implies \frac{\tan\;A+tan\;B}{\frac{tan\;A+tan\;B}{tan\;A.\;tan\;B}}}}

\large{\sf{\implies tan\;A.\;tan\;B}}

\large{\bf{Hence\;Proved}}

\bf{\underline{Some\;Trigonometric\;Identities:-}}

\sf{1).\; sin(90^{\circ}-A)=cosA}

\sf{2).\; tan(90^{\circ}-A)=cotA}

\sf{3).\; sec(90^{\circ}-A)=cosecA}

\sf{4).\; cos^{2}A+sin^{2}A=1}

\sf{5).\; 1+tan^{2}A=sec^{2}A}

\sf{6).\; cot^{2}A+1=cosec^{2}A}


Anonymous: in the denominator cot A, we know that cot A = 1/tanA
Anonymous: then in next step we cut and tanA tanB is left this is we have to prove
princeyadav26: mam TanA+TanB/(TanA+TanB/TanA.TanB) ye step nhi aa rehi smjh me
Anonymous: Bro Dinominetor ka reciprocal kroge toh upar wala TanA+TanB nicche wale se cut jayega or last me TanA.TanB bacchega
Anonymous: Inbox me Bro
Anonymous: sun
Anonymous: @ayushi hai
Anonymous: tu?
Similar questions