Math, asked by sowmiya35, 1 year ago

plz give me the answer fast

Attachments:

Answers

Answered by siddhartharao77
3

Answer:

171.68 cm²

Step-by-step explanation:

Given, height of cone = 4 cm.

Given, diameter of base = 8 cm.

Then, radius = 8/2 = 4 cm.

(i)

Volume of the toy = volume of hemisphere + volume of cone

                              = (2/3 * π * 4³ + 1/3 * π * 4² * 4)

                              = 201.14 cm³.


(ii)

Volume of the cube = 8³

                                 = 512


Difference in volume = 512 - 201.14

                                   = 310.86 cm³.


Therefore, Difference of the volume of cube and the toy = 310.86 cm³


(iii)

We know that slant height(l) = √r² + h²

                                               = √4² + 4²

                                               = √32

                                               = 4√2 cm.


Total surface area of the toy = πrl + 2πr²

⇒ πr(l + 2r)

⇒ (22/7) * 4(4√2 + 2*4) cm²

⇒ (22/7) * 4 * 4(√2 + 2) cm²

⇒ 352(2 + √2)/7 cm²

⇒ 171.68 cm².


Therefore, Total surface area of the toy = 171.68 cm²,


Hope it helps!

Answered by Siddharta7
0

Answer:

171.68

Step-by-step explanation:

Given, height of cone = 4 cm.

Given, diameter of base = 8 cm.

Then, radius = 8/2 = 4 cm.


Volume of the toy = volume of hemisphere + volume of cone

(2/3 * π * 4³ + 1/3 * π * 4² * 4)

201.14 cm³.


Volume of the cube = 8³

512

Difference in volume = 512 - 201.14

= 310.86 cm³.

Therefore, Difference of the volume of cube and the toy = 310.86 cm³


We know that slant height(l) = √r² + h²

√4² + 4²

√32

4√2 cm.


Total surface area of the toy = πrl + 2πr²

πr(l + 2r)

(22/7) * 4(4√2 + 2*4) cm²

(22/7) * 4 * 4(√2 + 2) cm²

352(2 + √2)/7 cm²

171.68 cm².

Therefore, Total surface area of the toy = 171.68 cm²,

Similar questions