Math, asked by Anonymous, 1 year ago

Plz give me the formulas of surface area and volume.
Plz........
No spams.........



sahil9055: but not much in science
Anonymous: Oh.....
sahil9055: hmm
Anonymous: Hii
sahil9055: hlw
Anonymous: Hii sahil
sahil9055: hlww
Anonymous: How r u
sahil9055: good and u
Anonymous: Hii

Answers

Answered by sahil9055
3
okkkkkkkkkkkkkkkkkkkkkkkkkk
Attachments:

sahil9055: meri dii v upsc he kr rhi he....
Anonymous: Oh.......
Anonymous: G8
Anonymous: Ok bye gn
sahil9055: good bye.........
Anonymous: Hii
sahil9055: hlww
Anonymous: How r u
phenomenal3657: upsc kr rhe ho kya
phenomenal3657: dono
Answered by TRISHNADEVI
20
 \red{ \huge{ \underline{ \overline{ \mid{ \mathcal{ \: \: FORMULA \: \: OF\: \: \mid}}}}}}

 \pink{ \huge{ \underline{ \underline{ \bold{ \purple{ \: \: SURFACE \: \: AREA \: \:}}}}}}

\pink{\huge{\underline{\underline{\bold{\purple{\: \: AND \: \: VOLUME \: \: }}}}}}




 \underline{ \bold{ \red{ \: \: 1. \: RECTANGULAR \: \: PARALLELOPIPED \: \:}}}
\underline{\bold{\red{\: \: or \: \: CUBOID\: \: }}}

 \underline{\bold{ \pink{ \: \: DEFINATION \: \: : \: \: }}} \\ \\ \bold{If \: \: a \: \: solid \: \: is \: \: bounded \: \: by \: \: six \: \: rectangular} \\ \bold{faces \: \: then \: \: it \: \: is \: \: known \: \: as \: \: a \: \: Rectangular} \\ \bold{Parallelopiped \: \: or \: \: Cuboid.}

 \underline{\bold{ \pink{ \: \: FORMULAS \: : \: }}} \\ \\ \bold{Volume = l \times b \times h} \\ \\ \bold{Surface \: \: area = 2( lb+ bh + lh)} \\ \\ \\ \bold{Where ,\: } \\ \: \: \: \: \: \: \: \: \: \: \: \bold{Length = l} \\ \: \: \: \: \: \: \: \: \: \: \: \bold{Breadth = b} \\ \: \: \: \: \: \: \: \: \: \: \: \bold{Height = h} \\

____________________________________

 \underline{ \bold{ \red{ \: \: 2. \: CUBE \: \: }}}

 \underline{\bold{ \pink{ \: DEFINATION \: : \: }} } \\ \\ \bold{A \: \: cube \: \: is \: \: a \: \: particular \: \: case \: \: of \: \: a \: \: cuboid.} \\ \bold{if \: \: all \: \: the \: \: six \: \: faces \: \: are \: \: squares \: \: it \: \: is \: \: said} \\ \bold{to \: \: be \: \: a \: \: Cube.}

 \underline{\bold{ \pink{ \: FORMULAS\: : \: } }}\\ \\ \bold{Volumn = a {}^{3} } \\ \\ \bold{Surface \: \: area = 2(a {}^{2} + a {}^{2} + a {}^{2}) = 6a {}^{2} } \\ \\ \bold{Where,} \\ \: \: \: \: \: \: \: \: \: \: \: \bold{Edge \: \: of \: \: a \: \: cube = a}

____________________________________

 \underline{\bold{ \red{ \: \: 3. \: RIGHT\: \: CIRCULAR \: \: CYLINDER \: \: } }}\\ \\


 \underline{\bold{ \pink{ \: \: DEFINATION \: : \: \: }}} \\ \\ \bold{If \: \: a \: \: rectangular \: \: is \: \: revolved \: \: about \: \: one} \\ \bold{of \: \: its \: \: side \: the \: \: the \: \: surface \: \: generated \: \: is} \\ \bold{known \: \: as \: \: a \: \: right \: \: circular \: \: cylinder.}

 \underline{ \bold{ \pink{ \: \: FORMULAS\: : \: \: }} } \\ \\ \bold{Volumn = \pi \: r {}^{2}h } \\ \\ \bold{Curved \: \: surface \: \: area = 2\pi \: rh} \\ \\ \bold{Total \: \: surface \: \: area = 2\pi \: r( h+r )} \\ \\ \bold{Where } \\ \bold{Radius \: \: of \: \: the \: \: cylinder = r} \\ \bold{Height \: \: of \: \: the \: \: cylinder = h}

____________________________________

 \underline{\bold{ \red{ \: \: 4. \:CONE \: \: }}}

 \underline{\bold{ \pink{\: \: DEFINATION \: : \: \: }}} \\ \\ \bold{A \: \: solid \: \: generated \: \: by \: \: moving \: \: a \: \: straight \: \: } \\ \bold{line \: \: with \: \: one \: \: end \: \: fixed \: \: and \: \: other \: \: end} \\ \bold{moving \: \: along \: \: a\: \: closed \: \: plane \: \: is \: \: called} \\ \bold{a \: \: cone.}

 \underline{ \bold{ \pink{ \: \: FORMULAS \: : \: \: }}} \\ \\ \bold{Volumn = \frac{1}{3} \pi \: r {}^{2}h } \\ \\ \bold{Slant \: \: surface \: \: area = \pi \: rl} \\ \\ \bold{Total \: \: surface \: \: area = \pi \: r( l+ r)} \\ \\ \bold{Where,} \\ \\ \bold{Radius \: \: of \: \: the \: \: cone = r} \\ \bold{Slant \: \: height \: \: of \: \: the \: \: cone = l} \\ \bold{Height \: \: of \: \: the \: \: cone = h}

____________________________________

 \underline{ \bold{ \red{ \: \: 5. \: SPHERE \: \: }}}

 \underline{ \bold{ \pink{ \: \: DEFINATION \: : \: \: }}} \\ \\ \bold{A\: \: sphere \: \: is \: \: a \: \: solid \: \: figure \: \: generated} \\ \bold{by \: \: a \: \: complete \: \: revolution \: \: of \: \: a \: \: semi - } \\ \bold{ - circle \: around \: \: its \: \: diameter \: \: which \: \: is \: \: } \\ \bold{kept \: \: fixed.}

 \underline{ \bold{ \pink{ \: \: FORMULAS \: : \: \: }}} \\ \\ \bold{Volumn = \frac{4}{3}\pi \: r {}^{3} } \\ \\ \bold{Surface \: \: area = 4\pi \: r {}^{2} } \\ \\ \bold{Where } \\ \bold{Radius \: \: of \: \:t he \: \: sphere = r}

____________________________________

 \underline {\bold{ \red{ \: \: 6. \:HEMISPHERE \: \: }}}

 \underline{ \bold{ \pink{ \: \: DEFINATION \: : \: \: }} } \\ \\ \bold{If \: \: a \: \: sphere \: \: is \: \: divided \: into \: \:two \: \: equal \: \: halves } \\ \bold{by \: \: a \: \: plane \: passing \: \: through \: \: the \: \: centre \: \: then} \\ \bold{half \: \: is \: \: called \: \: a \: \: Hemisphere.}

 \underline{ \bold{ \pink{ \: \: FORMULAS\: : \: \:} } } \\ \\ \bold{Volumn = \frac{2}{3}\pi \: r {}^{3} } \\ \\ \bold{Curved \: surface \: \: area = 2\pi \: r {}^{2} } \\ \\ \bold{Total \: \: surface \: \: area = 3\pi \: r {}^{2} } \\ \\ \bold{Where,} \\ \bold{Radius \: \: of \: \: the \: \: hemisphere = r}\\

____________________________________

Anonymous: j̤̈ḧ̤ä̤k̤̈ä̤s̤̈
Anonymous: mast hai didu
TRISHNADEVI: Thanks!!
Anonymous: gazab ❤
Anonymous: Thank u ji....
TRISHNADEVI: tysm !!
Anonymous: Wkcm
Anonymous: Wlcm
Anonymous: PERFECT !!
Similar questions