PLZ GIVE RELAVENT ANSWERS ONLY...............................
If x = log [cot (π/4 + θ)], then consider the following statements
when θ∈( -π/4 , π/4 )
I. cosh x = sec 2θ II. Sinh x = – tan 2θ
1) I is true and II is false 2) I is false and II is true 3) Both I and II are true 4) Both I and II are false
Answers
Solution:
Solution:-First let us find the value of coshx
as we know
coshx={e^x+e^-x)/2=(e^2x+1)/(2e^x)
analysing the log term we get
e^x=cot(π/4 +∅)
now simply we will put the value in the formula of coshx
coshx={cot^2(π/4+∅)+1}/{2×cot(π/4+∅)}
coshx={cos^2(π/4 +∅)+sin^2(π/4 +∅)}/{sin^2(π/4 +∅)(2×cos(π/4+∅)/sin(π/4+∅)}
coshx=1/{sin(π/4+∅)×2×cos(π/4+∅)}
coshx=1/{(sin2(π/4+∅)}
coshx=1/{sin(π/2+2∅)}
coshx=1/cos2∅
coshx=sec2∅
∅Hence I statement is correct
Let us analyse II statement
As we know that,
sinhx={(e^x-e^-x)}/2={(e^x-1/e^x)}/2=(e^2x-1)/(2e^x)
now.putting the value of
e^x=cot(π/4+∅)
sinhx={cot^2(π/4+∅)-1}/{2×cot(π/4+∅)}
now convert it into tan term
sinhx={1/tan^2(π/4+∅) -1}/{2×1/tan(π/4+∅)}
sinhx={tan(π/4 +∅)(1-tan^2(π/4 +∅)}/{2tan^2(π/4+∅)}
sinhx={1-tan^2(π/4 +∅)}/{2tan(π/4+∅)}.....i)
from the formula of Tan2∅
we know,Tan2∅=(2tan∅)/(1-tan^2∅)
2tan∅=(tan2∅)(1-tan^2∅)
Similarly,
2Tan(π/4+∅)=Tan2(π/4+∅)×(1-tan^2(π/4 +∅)
putting this value in i) we get
sinhx={1-tan^2(π/4+∅)}/{(tan2(π/4+∅))(1-tan^2(π/4+∅)}
1-tan^2(π/4+∅),will be cancelled out from numerator and denominator
then we get
sinhx=1/tan2(π/4+∅)=1/(tan(π/2+2∅)
sinhx=1/{tan(π/2+2∅)}
sinhx=1/-cot2∅
sinhx=-tan2∅
Hence II statement is also right
So,Option3) is the right one