Math, asked by reenagrg669, 3 months ago

plz give solution of middle question...​

Attachments:

Answers

Answered by kunalkumar06500
1

Step-by-step explanation:

show  \: that  \: there \:  is \:  no. \:  positive \:  integer \:  n \:  for \:  which  \:  \sqrt{n - 1} +  \sqrt{n + 1}   \: is  \: rational

let  \: is \:  assume  \: that  \: for  \: esome \:  positive  \: integer  \: n  \: is \:  a  \: rational \:  no.

let \:  \sqrt{n - 1}  +  \sqrt{n + 1}  =  \frac{a}{b}   \:  (1) \: a.b \: are \: tow \: positive \: integer

 =  \frac{1}{ \sqrt{n - 1}  +  \sqrt{n + 1} }  = \frac{b}{a}

 =  \frac{ \sqrt{n - 1 } -  \sqrt{n + 1} }{( { \sqrt{n - 1} })^{2} - ( { \sqrt{n + 1} })^{2}  }  =  \frac{b}{a}

 =  \frac{ \sqrt{n - 1} -  \sqrt{n + 1}  } {( \sqrt{n - 1}   +  \sqrt{n + 1)} ( \sqrt{n - 1}  -  \sqrt{n - + 1}) }  =  \frac{b}{a}

 =  \frac{ \sqrt{n - 1}  -  \sqrt{n + 1} }{(n - 1) - (n + 1)}  =  \frac{b}{a}

 =  \frac{ \sqrt{n - 1}  -  \sqrt{n + 1} }{n - 1 - n - 1}  =  \frac{b}{a}

 =  \frac{ \sqrt{n - 1} -  \sqrt{n + 1}  }{ - 2}  =  \frac{b}{a}

  = \sqrt{n + 1}  -  \sqrt{n - 1}  =  \frac{2b}{a}  \:  \:  \:  \:  - (ii)

now \: by \: (i) + (ii)and \: (i) - (ii)

eq \: (i) + (ii)

 = 2 \sqrt{n + 1}  =  \frac{a}{b}  +  \frac{2b}{a}

 = 2 \sqrt{n + 1}  =  \frac{ {a}^{2}  + 2 {b}^{2} }{ab}

  = {n + 1}  =  \frac{ {a}^{2}  + 2 {b}^{2} }{2ab}

eq \: (i) - (ii)

 = 2 \sqrt{n - 1}  =  \frac{a}{b}  - \frac{2b}{a}

 = 2 \sqrt{n - 1}  =  \frac{ {a}^{2}  - 2 {b}^{2} }{ab}

 =  \sqrt{n - 1}  =  \frac{ {a}^{2}  - 2 {b}^{2} }{2ab}

since \: a.b \: and \: 2 \: are \: integers \:  \frac{ {a}^{2}  + 2 {b}^{2} }{2ab} and \:  \frac{ {a}^{2}  - 2 {b}^{2} }{2ab } \:  must \:be \: rational \: numder

= \sqrt{n - 1} \:  and \:  \sqrt{n + 1}  \: are \: laso \: rational

= But they will be rational only when they are perfect squares

=Both n-1 and n+1 must be perfect squares

i \: hope \: it \: helpfull \: for \: you

Similar questions