Math, asked by maithili2956, 3 months ago

plz give the correct anawer​

Attachments:

Answers

Answered by vishalk78
1

Answer:

maithili

1s upon multiple 1st equation by 5 and 2nd equation by 2 we get

Step-by-step explanation:

multiple 1st equation by 5 and 2nd equation by 2 we get

and after solving X is eliminate

Answered by BrainlyRish
1

\bf{Given \::}\begin {cases} &\sf{2x - 3y = 14 \qquad \longrightarrow\:\:Eq.1}\\\\&\sf{ 5x + 2y = 16 \qquad \longrightarrow \:\:Eq.2}\end{cases}\\\\

Exigency To Solve : The Given Simultaneous Equation [ Eq.1 & Eq.1 ] by Elimination method .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \star\:\:\bf{ \bigg( 2x - 3y = 14\bigg)\qquad \longrightarrow \:\:Eq.1 }\\\\

\qquad \star\:\:\bf{ \bigg( 5x + 2 y = 16\bigg)\qquad \longrightarrow \:\:Eq.2}\\\\

⠀⠀⠀⠀⠀⠀⠀⠀We have to solve given Simultaneous Equation using Elimination method.

⠀⠀⠀⠀ In Elimination method we have to eliminate one variable for eliminating one variable we have to have one variable equal in both Equation . So , for this ,

  • Multiply Eq.1 by 2 and Eq.2 by 3 .

⠀⠀⠀⠀ Multiplying Eq.1 by 2 .

\qquad :\implies \:\:\sf{ \bigg( 2x - 3y = 14\bigg)\qquad \longrightarrow \:\:Eq.1 }\\\\

\qquad :\implies \:\:\sf{ \bigg( 2x - 3y = 14\bigg)\times 2 }\\\\

\qquad :\implies \:\:\bf{ \bigg( 4x - 6y = 28\bigg)\qquad \longrightarrow Eq.1 }\\\\

⠀⠀⠀⠀Multiplying Eq.2 by 3 .

\qquad :\implies \:\:\sf{ \bigg( 5x + 2 y = 16\bigg)\qquad \longrightarrow \:\:Eq.2}\\\\

\qquad :\implies \:\:\sf{ \bigg( 5x + 2 y = 16\bigg)\times 3}\\\\

\qquad :\implies \:\:\sf{ \bigg( 15x + 6 y = 48\bigg)\qquad\longrightarrow\:\:Eq.2}\\\\

Therefore,

  • \qquad :\implies \:\:\bf{ \bigg( 4x - 6y = 28\bigg)\qquad \longrightarrow Eq.1 }\\\\
  • \qquad :\implies \:\:\sf{ \bigg( 15x + 6 y = 48\bigg)\qquad\longrightarrow\:\:Eq.2}\\\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Eliminating \: one \: Variable \: from\:Eq.1 \:\&\:Eq.2 \::}}\\

\boxed{\begin {array}{ccc}\\ \dag\quad \underline{\bf Elimination \:Method:-}\\ \\ \sf{4x - 6y = 28 }\\ \\ \sf{15 x + 6y = 48 }\\ \\ \underline {\qquad \quad}\\ \\ \sf{19 x \:\:= 76}\end{array}}\\\\

\qquad :\implies \:\:\sf{ 19x = 76}\\\\

\qquad :\implies \:\:\sf{ x =\cancel {\dfrac{76}{19}}}\\\\

\qquad :\implies \:\:\bf{ x = 4}\\\\

⠀⠀⠀⠀⠀⠀\underline {\sf{\star\:Now \: By \: Substituting \: x =4 \: in \: Eq.1 \::}}\\

\qquad :\implies \:\:\sf{ \bigg( 2x - 3y = 14\bigg)\qquad \longrightarrow \:\:Eq.1 }\\\\

\qquad :\implies \:\:\sf{  2\times 4 - 3y = 14 }\\\\

\qquad :\implies \:\:\sf{  8 - 3y = 14 }\\\\

\qquad :\implies \:\:\sf{   - 3y = 14 - 8 }\\\\

\qquad :\implies \:\:\sf{   - 3y = 6 }\\\\

\qquad :\implies \:\:\sf{   y = \cancel {\dfrac{6}{-3}}}\\\\

\qquad :\implies \:\:\bf{   y = -2 }\\\\

Therefore,

⠀⠀⠀⠀⠀\therefore \underline{ \mathrm { Hence \:The\:Value \:of\:x \:is :\bf{4\: }\:\sf{\&\:Value\:of\:y \:is }\:\bf{-2}\:\:}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions